找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning and Convolutional Neural Networks for Medical Image Computing; Precision Medicine, Le Lu,Yefeng Zheng,Lin Yang Book 2017 Spr

[復制鏈接]
查看: 9013|回復: 59
樓主
發(fā)表于 2025-3-21 16:51:39 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Deep Learning and Convolutional Neural Networks for Medical Image Computing
副標題Precision Medicine,
編輯Le Lu,Yefeng Zheng,Lin Yang
視頻videohttp://file.papertrans.cn/265/264590/264590.mp4
概述Addresses the challenges of applying deep learning for medical image analysis.Presents insights from leading experts in the field.Describes principles and best practices.Includes supplementary materia
叢書名稱Advances in Computer Vision and Pattern Recognition
圖書封面Titlebook: Deep Learning and Convolutional Neural Networks for Medical Image Computing; Precision Medicine,  Le Lu,Yefeng Zheng,Lin Yang Book 2017 Spr
描述.This book presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural networks, with the theory supported by practical examples. Features: highlights how the use of deep neural networks can address new questions and protocols, as well as improve upon existing challenges in medical image computing; discusses the insightful research experience of Dr. Ronald M. Summers; presents a comprehensive review of the latest research and literature; describes a range of different methods that make use of deep learning for object or landmark detection tasks in 2D and 3D medical imaging; examines a varied selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to interleaved text and image deep mining on a large-scale radiology image database..
出版日期Book 2017
關鍵詞Deep Learning; Convolutional Neural Networks; Medical Image Analytics; Computer-Aided Diagnosis; Hospita
版次1
doihttps://doi.org/10.1007/978-3-319-42999-1
isbn_softcover978-3-319-82713-1
isbn_ebook978-3-319-42999-1Series ISSN 2191-6586 Series E-ISSN 2191-6594
issn_series 2191-6586
copyrightSpringer International Publishing Switzerland 2017
The information of publication is updating

書目名稱Deep Learning and Convolutional Neural Networks for Medical Image Computing影響因子(影響力)




書目名稱Deep Learning and Convolutional Neural Networks for Medical Image Computing影響因子(影響力)學科排名




書目名稱Deep Learning and Convolutional Neural Networks for Medical Image Computing網絡公開度




書目名稱Deep Learning and Convolutional Neural Networks for Medical Image Computing網絡公開度學科排名




書目名稱Deep Learning and Convolutional Neural Networks for Medical Image Computing被引頻次




書目名稱Deep Learning and Convolutional Neural Networks for Medical Image Computing被引頻次學科排名




書目名稱Deep Learning and Convolutional Neural Networks for Medical Image Computing年度引用




書目名稱Deep Learning and Convolutional Neural Networks for Medical Image Computing年度引用學科排名




書目名稱Deep Learning and Convolutional Neural Networks for Medical Image Computing讀者反饋




書目名稱Deep Learning and Convolutional Neural Networks for Medical Image Computing讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:49:44 | 只看該作者
Review of Deep Learning Methods in Mammography, Cardiovascular, and Microscopy Image Analysisnt role in disease detection and computer-aided decision-making. Machine learning techniques have powered many aspects in medical investigations and clinical practice. Recently, deep learning is emerging a leading machine learning tool in computer vision and begins attracting considerable attentions
板凳
發(fā)表于 2025-3-22 04:23:49 | 只看該作者
地板
發(fā)表于 2025-3-22 05:15:54 | 只看該作者
5#
發(fā)表于 2025-3-22 10:19:30 | 只看該作者
A Novel Cell Detection Method Using Deep Convolutional Neural Network and Maximum-Weight Independentocedures. In this chapter, we propose a novel algorithm for general cell detection problem: First, a set of cell detection candidates is generated using different algorithms with varying parameters. Second, each candidate is assigned a score by a trained deep convolutional neural network (DCNN). Fin
6#
發(fā)表于 2025-3-22 14:58:36 | 只看該作者
Deep Learning for Histopathological Image Analysis: Towards Computerized Diagnosis on Cancerspathological tissue specimens. For a number of cancers, the clinical cancer grading system is highly correlated with the pathomic features of histologic primitives that appreciated from histopathological images. However, automated detection and segmentation of histologic primitives is pretty challen
7#
發(fā)表于 2025-3-22 18:39:10 | 只看該作者
8#
發(fā)表于 2025-3-23 00:06:33 | 只看該作者
9#
發(fā)表于 2025-3-23 03:45:30 | 只看該作者
10#
發(fā)表于 2025-3-23 06:09:51 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 02:06
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
乌拉特前旗| 德令哈市| 台湾省| 抚顺县| 六盘水市| 错那县| 义马市| 老河口市| 城口县| 金华市| 临夏县| 辽阳县| 平度市| 志丹县| 临漳县| 长治县| 河津市| 斗六市| 修文县| 中江县| 邵东县| 金溪县| 廉江市| 丰城市| 淮南市| 南靖县| 桐城市| 阳西县| 简阳市| 宁城县| 惠来县| 鹰潭市| 青岛市| 昌宁县| 丽水市| 腾冲县| 景谷| 晋江市| 龙川县| 琼海市| 新疆|