找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning Models; A Practical Approach Jonah Gamba Book 2024 The Editor(s) (if applicable) and The Author(s), under exclusive license t

[復(fù)制鏈接]
樓主: 萬能
11#
發(fā)表于 2025-3-23 12:41:12 | 只看該作者
12#
發(fā)表于 2025-3-23 17:37:16 | 只看該作者
Remote Sensing Example for Deep Learning,sification starting from a?known dataset. Although we use remote sensing as an example, the key point is to show the level of hyper-parameter tuning required to get desired results from any multiclass problem to which deep learning is applied. To emphasize the hands-on approach the full script is pr
13#
發(fā)表于 2025-3-23 18:33:17 | 只看該作者
Xiaocun Zhu,Pius Leuba dit Gallandrted for deep learning model evaluation, both offline and online. Finally, some self-evaluation exercises are given to emphasize the key takeaways from the chapter. We also provide a?list of references for further reading.
14#
發(fā)表于 2025-3-24 02:16:25 | 只看該作者
Amaresh Chakrabarti,Vishal Singhsification starting from a?known dataset. Although we use remote sensing as an example, the key point is to show the level of hyper-parameter tuning required to get desired results from any multiclass problem to which deep learning is applied. To emphasize the hands-on approach the full script is pr
15#
發(fā)表于 2025-3-24 03:07:14 | 只看該作者
16#
發(fā)表于 2025-3-24 07:55:36 | 只看該作者
2730-7484 p learning is employed. By consolidating all necessary information into a single resource, readers can bypass the hassle of scouring scattered online sources, gaining a one-stop solution to dive into deep learn978-981-99-9674-2978-981-99-9672-8Series ISSN 2730-7484 Series E-ISSN 2730-7492
17#
發(fā)表于 2025-3-24 12:27:14 | 只看該作者
18#
發(fā)表于 2025-3-24 15:25:34 | 只看該作者
19#
發(fā)表于 2025-3-24 21:21:02 | 只看該作者
Building Deep Learning Models,of the concepts behind these models are briefly explained so as to give the reader smooth entry into each section while concentrating mainly of how-to-use rather than details of algorithms themselves. The entry point is shallow networks, upon which the deep neural networks are developed. The is then
20#
發(fā)表于 2025-3-25 02:06:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 16:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
白银市| 宁强县| 米林县| 福清市| 临湘市| 甘德县| 庆元县| 香格里拉县| 花垣县| 民县| 武陟县| 湛江市| 寿宁县| 平原县| 岳西县| 惠安县| 盘山县| 湖南省| 邓州市| 台湾省| 屏山县| 兴国县| 布尔津县| 教育| 海原县| 九龙县| 海门市| 敖汉旗| 陕西省| 安图县| 韩城市| 丰镇市| 米泉市| 隆回县| 石嘴山市| 肥东县| 红安县| 石泉县| 新建县| 延安市| 黄陵县|