找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning Models; A Practical Approach Jonah Gamba Book 2024 The Editor(s) (if applicable) and The Author(s), under exclusive license t

[復(fù)制鏈接]
樓主: 萬能
21#
發(fā)表于 2025-3-25 03:35:43 | 只看該作者
Remote Sensing Example for Deep Learning, neural networks. However, there is an increasing recognition that deep learning, which has been?applied successfully in other areas such as computer vision and language processing, is a viable alternative to traditional machine learning. This chapter will work through a specific example of the?appl
22#
發(fā)表于 2025-3-25 09:29:56 | 只看該作者
23#
發(fā)表于 2025-3-25 13:37:16 | 只看該作者
https://doi.org/10.1007/978-3-030-96866-3reader a big picture of the position of deep learning and how it evolved. The scope of this book is given at the end of the chapter. Finally, some self-evaluation exercises are given to emphasize the key takeaways from the chapter. We also provide?a list of references for further reading.
24#
發(fā)表于 2025-3-25 18:19:28 | 只看該作者
Basic Approaches in Object Detection and Classification by Deep Learning,reader a big picture of the position of deep learning and how it evolved. The scope of this book is given at the end of the chapter. Finally, some self-evaluation exercises are given to emphasize the key takeaways from the chapter. We also provide?a list of references for further reading.
25#
發(fā)表于 2025-3-25 20:14:11 | 只看該作者
https://doi.org/10.1007/978-3-031-45319-9er that we give a quick dive into the Keras library and some references for further investigation. Finally, some self-evaluation exercises are given to emphasize the key takeaways from the chapter. We also provide a?list of references for further reading.
26#
發(fā)表于 2025-3-26 02:28:48 | 只看該作者
https://doi.org/10.1007/978-3-031-45319-9e of deep learning models given a set of data. Finally, some self-evaluation exercises are given to emphasize the key takeaways from the chapter. We also provide a?list of references for further reading.
27#
發(fā)表于 2025-3-26 07:06:20 | 只看該作者
28#
發(fā)表于 2025-3-26 12:08:57 | 只看該作者
The Building Blocks of Machine Learning and Deep Learning,e of deep learning models given a set of data. Finally, some self-evaluation exercises are given to emphasize the key takeaways from the chapter. We also provide a?list of references for further reading.
29#
發(fā)表于 2025-3-26 12:59:33 | 只看該作者
30#
發(fā)表于 2025-3-26 20:10:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 02:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安徽省| 平山县| 玛沁县| 凌云县| 望江县| 凉山| 西青区| 柳州市| 出国| 张北县| 开鲁县| 建平县| 浦北县| 平利县| 苍山县| 宜阳县| 兴国县| 靖西县| 五台县| 洛宁县| 都江堰市| 阿鲁科尔沁旗| 五寨县| 日土县| 武乡县| 长海县| 绿春县| 北川| 元谋县| 泰宁县| 屏边| 措勤县| 镇雄县| 都安| 凌海市| 谢通门县| 桦甸市| 孟连| 岐山县| 如东县| 太仆寺旗|