找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning Classifiers with Memristive Networks; Theory and Applicati Alex Pappachen James Book 2020 Springer Nature Switzerland AG 2020

[復(fù)制鏈接]
樓主: 萬(wàn)能
31#
發(fā)表于 2025-3-26 22:33:40 | 只看該作者
Design for Six Sigma + LeanToolsetThis chapter provides a brief overview of learning algorithms and their implementations on hardware. We focus on memristor based systems for leaning, as this is one of the most promising solutions to implement deep neural network on hardware, due to the small on-chip area and low power consumption.
32#
發(fā)表于 2025-3-27 01:15:30 | 只看該作者
33#
發(fā)表于 2025-3-27 09:06:43 | 只看該作者
https://doi.org/10.1007/978-3-540-89514-5This chapter covers the memristive HTM implementations on mixed-signal and analog hardware. Most of the implemented memristive systems are based on modified HTM algorithm. The HTM is often used as a feature encoding and feature extraction tool, and these features are then used with conventional nearest neighbor method for classification.
34#
發(fā)表于 2025-3-27 10:06:57 | 只看該作者
35#
發(fā)表于 2025-3-27 17:38:00 | 只看該作者
Memristive Deep Convolutional Neural NetworksThis chapter covers the implementation of deep learning neural networks and memristive systems. In particular, deep memristive convolutional neural network (CNN) implementation is illustrated. In addition, the main issues and challenges of deep neural network implementation are discussed.
36#
發(fā)表于 2025-3-27 18:35:33 | 只看該作者
Memristive Hierarchical Temporal MemoryThis chapter covers the memristive HTM implementations on mixed-signal and analog hardware. Most of the implemented memristive systems are based on modified HTM algorithm. The HTM is often used as a feature encoding and feature extraction tool, and these features are then used with conventional nearest neighbor method for classification.
37#
發(fā)表于 2025-3-27 23:19:31 | 只看該作者
Sustainable Development Goals Seriesogies has been largely attributed to the convergence in the growth on computational capabilities, and that of the large availability of the data resulting from Internet of things applications. The need to have higher computational capabilities enforces the need to have low power solutions and smalle
38#
發(fā)表于 2025-3-28 04:42:36 | 只看該作者
Patcharaporn Duangputtan,Nobuo Mishimatics. This chapter covers the basics of memristor characteristics, models and a succinct review of practically realized memristive devices. Memristors represent a class of two terminal resistive switching multi-state memory devices that can be compatible with existing integrated circuit technologies
39#
發(fā)表于 2025-3-28 07:44:56 | 只看該作者
40#
發(fā)表于 2025-3-28 10:38:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 14:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
葫芦岛市| 东辽县| 洮南市| 皋兰县| 太原市| 绥宁县| 太谷县| 界首市| 元阳县| 巨野县| 北川| 平塘县| 怀远县| 犍为县| 东光县| 万州区| 西贡区| 静安区| 临澧县| 察雅县| 永宁县| 崇明县| 义乌市| 信宜市| 江川县| 富民县| 大理市| 呈贡县| 沂源县| 盱眙县| 常熟市| 普洱| 西贡区| 威海市| 开原市| 宜君县| 庆元县| 贵德县| 靖西县| 鸡西市| 错那县|