找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning Classifiers with Memristive Networks; Theory and Applicati Alex Pappachen James Book 2020 Springer Nature Switzerland AG 2020

[復制鏈接]
查看: 7661|回復: 57
樓主
發(fā)表于 2025-3-21 17:21:06 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Deep Learning Classifiers with Memristive Networks
副標題Theory and Applicati
編輯Alex Pappachen James
視頻videohttp://file.papertrans.cn/265/264574/264574.mp4
概述Offers an introduction to deep neural network architectures.Describes in detail different kind of neuro-memristive systems, circuits and models.Shows how to implement different kind of neural networks
叢書名稱Modeling and Optimization in Science and Technologies
圖書封面Titlebook: Deep Learning Classifiers with Memristive Networks; Theory and Applicati Alex Pappachen James Book 2020 Springer Nature Switzerland AG 2020
描述.This book introduces readers to the fundamentals of deep neural network architectures, with a special emphasis on memristor circuits and systems. At first, the book offers an overview of neuro-memristive systems, including memristor devices, models, and theory, as well as an introduction to deep learning neural networks such as multi-layer networks, convolution neural networks, hierarchical temporal memory, and long short term memories, and deep neuro-fuzzy networks. It then focuses on the design of these neural networks using memristor crossbar architectures in detail. The book integrates the theory with various applications of neuro-memristive circuits and systems. It provides an introductory tutorial on a range of issues in the design, evaluation techniques, and implementations of different deep neural network architectures with memristors..
出版日期Book 2020
關鍵詞Neuro-memristive Computing; Memristive Crossbar Arrays; Memristor Models; Memristor Materials; Deep Lear
版次1
doihttps://doi.org/10.1007/978-3-030-14524-8
isbn_ebook978-3-030-14524-8Series ISSN 2196-7326 Series E-ISSN 2196-7334
issn_series 2196-7326
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Deep Learning Classifiers with Memristive Networks影響因子(影響力)




書目名稱Deep Learning Classifiers with Memristive Networks影響因子(影響力)學科排名




書目名稱Deep Learning Classifiers with Memristive Networks網絡公開度




書目名稱Deep Learning Classifiers with Memristive Networks網絡公開度學科排名




書目名稱Deep Learning Classifiers with Memristive Networks被引頻次




書目名稱Deep Learning Classifiers with Memristive Networks被引頻次學科排名




書目名稱Deep Learning Classifiers with Memristive Networks年度引用




書目名稱Deep Learning Classifiers with Memristive Networks年度引用學科排名




書目名稱Deep Learning Classifiers with Memristive Networks讀者反饋




書目名稱Deep Learning Classifiers with Memristive Networks讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:37:27 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:01:18 | 只看該作者
地板
發(fā)表于 2025-3-22 05:30:31 | 只看該作者
5#
發(fā)表于 2025-3-22 10:22:38 | 只看該作者
Introduction to Neuro-Memristive Systemsions that extend the capabilities of exiting computing hardware. The full potential of neuro-memristive systems is yet to be completely realised and could provide ways to develop higher level of socially engineered machine cognition.
6#
發(fā)表于 2025-3-22 14:40:08 | 只看該作者
7#
發(fā)表于 2025-3-22 20:11:19 | 只看該作者
Multi-level Memristive Memory for Neural Networksand architecture level issues force memory engineers to approach memristive memory design in different ways. In this chapter device-level problems: restricted number of resistance states, stochastic switching and architecture level problem: sneak paths will be discussed, and their state of the art solutions will be presented.
8#
發(fā)表于 2025-3-23 00:45:28 | 只看該作者
2196-7326 els.Shows how to implement different kind of neural networks.This book introduces readers to the fundamentals of deep neural network architectures, with a special emphasis on memristor circuits and systems. At first, the book offers an overview of neuro-memristive systems, including memristor device
9#
發(fā)表于 2025-3-23 04:32:51 | 只看該作者
10#
發(fā)表于 2025-3-23 05:50:25 | 只看該作者
Design for Six Sigma + LeanToolsetlows extending the capabilities of threshold logic circuits. In this chapter, we review the hardware designs of memristive threshold logic (MTL) circuits that are inspired by the principle of neuron firing inside the brain. Variety of threshold architectures, their limitations and possible field of application are discussed.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-18 11:52
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
通辽市| 兴安盟| 南雄市| 安乡县| 祁东县| 商城县| 北票市| 花莲县| 崇文区| 泰和县| 余姚市| 台南县| 安图县| 屏东市| 无棣县| 临潭县| 平定县| 南宁市| 桐乡市| 成安县| 普安县| 梅河口市| 读书| 大足县| 甘洛县| 桃园县| 永和县| 龙岩市| 城口县| 仁布县| 苗栗市| 河北区| 萍乡市| 遂平县| 广昌县| 荥阳市| 灵璧县| 阿巴嘎旗| 萨嘎县| 巫溪县| 柘荣县|