找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning Classifiers with Memristive Networks; Theory and Applicati Alex Pappachen James Book 2020 Springer Nature Switzerland AG 2020

[復制鏈接]
樓主: 萬能
31#
發(fā)表于 2025-3-26 22:33:40 | 只看該作者
Design for Six Sigma + LeanToolsetThis chapter provides a brief overview of learning algorithms and their implementations on hardware. We focus on memristor based systems for leaning, as this is one of the most promising solutions to implement deep neural network on hardware, due to the small on-chip area and low power consumption.
32#
發(fā)表于 2025-3-27 01:15:30 | 只看該作者
33#
發(fā)表于 2025-3-27 09:06:43 | 只看該作者
https://doi.org/10.1007/978-3-540-89514-5This chapter covers the memristive HTM implementations on mixed-signal and analog hardware. Most of the implemented memristive systems are based on modified HTM algorithm. The HTM is often used as a feature encoding and feature extraction tool, and these features are then used with conventional nearest neighbor method for classification.
34#
發(fā)表于 2025-3-27 10:06:57 | 只看該作者
35#
發(fā)表于 2025-3-27 17:38:00 | 只看該作者
Memristive Deep Convolutional Neural NetworksThis chapter covers the implementation of deep learning neural networks and memristive systems. In particular, deep memristive convolutional neural network (CNN) implementation is illustrated. In addition, the main issues and challenges of deep neural network implementation are discussed.
36#
發(fā)表于 2025-3-27 18:35:33 | 只看該作者
Memristive Hierarchical Temporal MemoryThis chapter covers the memristive HTM implementations on mixed-signal and analog hardware. Most of the implemented memristive systems are based on modified HTM algorithm. The HTM is often used as a feature encoding and feature extraction tool, and these features are then used with conventional nearest neighbor method for classification.
37#
發(fā)表于 2025-3-27 23:19:31 | 只看該作者
Sustainable Development Goals Seriesogies has been largely attributed to the convergence in the growth on computational capabilities, and that of the large availability of the data resulting from Internet of things applications. The need to have higher computational capabilities enforces the need to have low power solutions and smalle
38#
發(fā)表于 2025-3-28 04:42:36 | 只看該作者
Patcharaporn Duangputtan,Nobuo Mishimatics. This chapter covers the basics of memristor characteristics, models and a succinct review of practically realized memristive devices. Memristors represent a class of two terminal resistive switching multi-state memory devices that can be compatible with existing integrated circuit technologies
39#
發(fā)表于 2025-3-28 07:44:56 | 只看該作者
40#
發(fā)表于 2025-3-28 10:38:38 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 11:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
土默特右旗| 定边县| 环江| 新竹市| 长汀县| 呼玛县| 娱乐| 东兴市| 武鸣县| 大城县| 库尔勒市| 萍乡市| 绿春县| 涞源县| 禹城市| 雅江县| 密云县| 常州市| 布拖县| 白山市| 怀集县| 西青区| 庐江县| 邹城市| 阜康市| 鄂州市| 翼城县| 罗城| 丰宁| 北京市| 汝州市| 宜丰县| 澜沧| 江源县| 子长县| 巴林右旗| 望城县| 大荔县| 古蔺县| 富蕴县| 饶河县|