找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning Classifiers with Memristive Networks; Theory and Applicati Alex Pappachen James Book 2020 Springer Nature Switzerland AG 2020

[復制鏈接]
樓主: 萬能
31#
發(fā)表于 2025-3-26 22:33:40 | 只看該作者
Design for Six Sigma + LeanToolsetThis chapter provides a brief overview of learning algorithms and their implementations on hardware. We focus on memristor based systems for leaning, as this is one of the most promising solutions to implement deep neural network on hardware, due to the small on-chip area and low power consumption.
32#
發(fā)表于 2025-3-27 01:15:30 | 只看該作者
33#
發(fā)表于 2025-3-27 09:06:43 | 只看該作者
https://doi.org/10.1007/978-3-540-89514-5This chapter covers the memristive HTM implementations on mixed-signal and analog hardware. Most of the implemented memristive systems are based on modified HTM algorithm. The HTM is often used as a feature encoding and feature extraction tool, and these features are then used with conventional nearest neighbor method for classification.
34#
發(fā)表于 2025-3-27 10:06:57 | 只看該作者
35#
發(fā)表于 2025-3-27 17:38:00 | 只看該作者
Memristive Deep Convolutional Neural NetworksThis chapter covers the implementation of deep learning neural networks and memristive systems. In particular, deep memristive convolutional neural network (CNN) implementation is illustrated. In addition, the main issues and challenges of deep neural network implementation are discussed.
36#
發(fā)表于 2025-3-27 18:35:33 | 只看該作者
Memristive Hierarchical Temporal MemoryThis chapter covers the memristive HTM implementations on mixed-signal and analog hardware. Most of the implemented memristive systems are based on modified HTM algorithm. The HTM is often used as a feature encoding and feature extraction tool, and these features are then used with conventional nearest neighbor method for classification.
37#
發(fā)表于 2025-3-27 23:19:31 | 只看該作者
Sustainable Development Goals Seriesogies has been largely attributed to the convergence in the growth on computational capabilities, and that of the large availability of the data resulting from Internet of things applications. The need to have higher computational capabilities enforces the need to have low power solutions and smalle
38#
發(fā)表于 2025-3-28 04:42:36 | 只看該作者
Patcharaporn Duangputtan,Nobuo Mishimatics. This chapter covers the basics of memristor characteristics, models and a succinct review of practically realized memristive devices. Memristors represent a class of two terminal resistive switching multi-state memory devices that can be compatible with existing integrated circuit technologies
39#
發(fā)表于 2025-3-28 07:44:56 | 只看該作者
40#
發(fā)表于 2025-3-28 10:38:38 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 11:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
望江县| 响水县| 长子县| 呼伦贝尔市| 台中市| 永登县| 天柱县| 修水县| 鄂托克前旗| 大同县| 高唐县| 扎兰屯市| 沅陵县| 稻城县| 体育| 门源| 准格尔旗| 大同市| 措美县| 南丹县| 南乐县| 泌阳县| 海伦市| 太原市| 天柱县| 额济纳旗| 广安市| 公安县| 安泽县| 武隆县| 穆棱市| 贡嘎县| 天气| 宿松县| 宁国市| 班戈县| 拉萨市| 虎林市| 汉川市| 会同县| 青阳县|