找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Generative Models; Second MICCAI Worksh Anirban Mukhopadhyay,Ilkay Oksuz,Yixuan Yuan Conference proceedings 2022 The Editor(s) (if app

[復制鏈接]
樓主: GOLF
41#
發(fā)表于 2025-3-28 15:25:47 | 只看該作者
Cross Attention Transformers for?Multi-modal Unsupervised Whole-Body PET Anomaly Detectionthe transformer via cross-attention, i.e. supplying anatomical reference information from paired CT images to aid the PET anomaly detection task. Using 83 whole-body PET/CT samples containing various cancer types, we show that our anomaly detection method is robust and capable of achieving accurate
42#
發(fā)表于 2025-3-28 18:59:02 | 只看該作者
Interpreting Latent Spaces of?Generative Models for?Medical Images Using Unsupervised Methodsize. Furthermore, the directions show that the generative models capture 3D structure despite being presented only with 2D data. The results show that unsupervised methods to discover interpretable directions in GANs generalize to VAEs and can be applied to medical images. This opens a wide array of
43#
發(fā)表于 2025-3-28 23:10:51 | 只看該作者
44#
發(fā)表于 2025-3-29 06:03:09 | 只看該作者
45#
發(fā)表于 2025-3-29 09:28:13 | 只看該作者
Flow-Based Visual Quality Enhancer for?Super-Resolution Magnetic Resonance Spectroscopic Imagings clinical applications. Deep learning-based super-resolution methods provided promising results for improving the spatial resolution of MRSI, but the super-resolved images are often blurry compared to the experimentally-acquired high-resolution images. Attempts have been made with the generative ad
46#
發(fā)表于 2025-3-29 11:33:41 | 只看該作者
Cross Attention Transformers for?Multi-modal Unsupervised Whole-Body PET Anomaly Detectione, stage and predict the evolution of cancer. Due to this heterogeneity, a general-purpose cancer detection model can be built using unsupervised learning anomaly detection models; these models learn a healthy representation of tissue and detect cancer by predicting deviations from healthy appearanc
47#
發(fā)表于 2025-3-29 18:02:59 | 只看該作者
48#
發(fā)表于 2025-3-29 21:27:15 | 只看該作者
49#
發(fā)表于 2025-3-30 03:27:20 | 只看該作者
Learning Generative Factors of?EEG Data with?Variational Auto-Encodersna of interest. We address this challenge by applying the framework of variational auto-encoders to 1) classify multiple pathologies and 2) recover the neurological mechanisms of those pathologies in a data-driven manner. Our framework learns generative factors of data related to pathologies. We pro
50#
發(fā)表于 2025-3-30 06:39:03 | 只看該作者
An Image Feature Mapping Model for?Continuous Longitudinal Data Completion and?Generation of?Synthetlete, or have inconsistencies between observations. Thus, we propose a generative model that not only produces continuous trajectories of fully synthetic patient images, but also imputes missing data in existing trajectories, by estimating realistic progression over time. Our generative model is tra
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 17:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
梁山县| 邯郸县| 甘德县| 互助| 娄烦县| 和静县| 宣武区| 马鞍山市| 保德县| 永新县| 南通市| 绥中县| 黄骅市| 正安县| 昭觉县| 泰和县| 深泽县| 突泉县| 炉霍县| 北安市| 宜兰县| 茂名市| 沽源县| 布拖县| 峨山| 灵山县| 乌海市| 乌兰县| 繁昌县| 德钦县| 金堂县| 应用必备| 宾阳县| 西青区| 民县| 延长县| 天津市| 长治市| 迁西县| 和林格尔县| 新泰市|