找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Generative Models; Second MICCAI Worksh Anirban Mukhopadhyay,Ilkay Oksuz,Yixuan Yuan Conference proceedings 2022 The Editor(s) (if app

[復(fù)制鏈接]
樓主: GOLF
31#
發(fā)表于 2025-3-26 22:42:01 | 只看該作者
32#
發(fā)表于 2025-3-27 05:04:52 | 只看該作者
3D (c)GAN for?Whole Body MR Synthesises 3D medical images. The model can easily be conditioned on meta data, for example available patient information. We evaluate the quality of the generated images and compare our model against the 3D-StyleGAN model which is also designed for 3D medical image synthesis.
33#
發(fā)表于 2025-3-27 05:59:15 | 只看該作者
Conference proceedings 2022rative Adversarial Network (GAN) and Variational Auto-Encoder?(VAE) are currently receiving widespread attention from not only the computer?vision and machine learning communities, but also in the MIC and CAI community..
34#
發(fā)表于 2025-3-27 09:38:17 | 只看該作者
0302-9743 ch as Generative Adversarial Network (GAN) and Variational Auto-Encoder?(VAE) are currently receiving widespread attention from not only the computer?vision and machine learning communities, but also in the MIC and CAI community..978-3-031-18575-5978-3-031-18576-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
35#
發(fā)表于 2025-3-27 16:39:36 | 只看該作者
36#
發(fā)表于 2025-3-27 20:00:49 | 只看該作者
Abstract Factory (Abstract Factory),the transformer via cross-attention, i.e. supplying anatomical reference information from paired CT images to aid the PET anomaly detection task. Using 83 whole-body PET/CT samples containing various cancer types, we show that our anomaly detection method is robust and capable of achieving accurate
37#
發(fā)表于 2025-3-27 23:34:40 | 只看該作者
38#
發(fā)表于 2025-3-28 04:47:00 | 只看該作者
The Abuse of Discretionary PowerIPF. ATN was shown to be quicker and easier to train than simGAN. ATN-based airway measurements showed consistently stronger associations with mortality than simGAN-derived airway metrics on IPF CTs. Airway synthesis by a transformation network that refines synthetic data using perceptual losses is
39#
發(fā)表于 2025-3-28 07:07:43 | 只看該作者
40#
發(fā)表于 2025-3-28 10:36:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 17:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
亳州市| 胶南市| 杭锦旗| 蒙城县| 通海县| 白朗县| 玉树县| 阜南县| 天祝| 沙坪坝区| 温宿县| 西林县| 富平县| 错那县| 龙山县| 锡林郭勒盟| 阿图什市| 垫江县| 大庆市| 福泉市| 福建省| 仙桃市| 博客| 上杭县| 佛坪县| 新疆| 江口县| 南岸区| 尚义县| 贵阳市| 介休市| 江门市| 新竹市| 武陟县| 抚宁县| 西林县| 嵊州市| 罗源县| 东港市| 都兰县| 宜宾市|