找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Generative Models; Second MICCAI Worksh Anirban Mukhopadhyay,Ilkay Oksuz,Yixuan Yuan Conference proceedings 2022 The Editor(s) (if app

[復(fù)制鏈接]
樓主: GOLF
21#
發(fā)表于 2025-3-25 06:52:58 | 只看該作者
22#
發(fā)表于 2025-3-25 10:28:18 | 只看該作者
Springer Tracts in Mechanical Engineeringge from multiple images for the surgery scene. We conduct experiments using an original dataset of three different types of surgeries. Our experiments show that we can successfully synthesize novel views from the images recorded by the multiple cameras embedded in the surgical lamp.
23#
發(fā)表于 2025-3-25 13:25:56 | 只看該作者
24#
發(fā)表于 2025-3-25 18:13:48 | 只看該作者
What is Healthy? Generative Counterfactual Diffusion for Lesion Localizationthy data in DPMs. We improve on previous counterfactual DPMs by manipulating the generation process with implicit guidance along with attention conditioning instead of using classifiers (Code is available at .).
25#
發(fā)表于 2025-3-25 23:58:30 | 只看該作者
Learning Generative Factors of?EEG Data with?Variational Auto-Encodersamework to learn disease-related mechanisms consistent with current domain knowledge. We also compare the proposed framework with several benchmark approaches and indicate its classification performance and interpretability advantages.
26#
發(fā)表于 2025-3-26 04:13:49 | 只看該作者
An Image Feature Mapping Model for?Continuous Longitudinal Data Completion and?Generation of?Synthetg progression in longitudinal data. Furthermore, we applied the proposed model on a complex neuroimaging database extracted from ADNI. All datasets show that the model is able to learn overall (disease) progression over time.
27#
發(fā)表于 2025-3-26 05:37:30 | 只看該作者
Novel View Synthesis for?Surgical Recordingge from multiple images for the surgery scene. We conduct experiments using an original dataset of three different types of surgeries. Our experiments show that we can successfully synthesize novel views from the images recorded by the multiple cameras embedded in the surgical lamp.
28#
發(fā)表于 2025-3-26 10:52:28 | 只看該作者
Anomaly Detection Using Generative Models and?Sum-Product Networks in?Mammography Scansith Random and Tensorized Sum-Product Networks on mammography images using patch-wise processing and observe superior performance over utilizing the models standalone and state-of-the-art in anomaly detection for medical data.
29#
發(fā)表于 2025-3-26 15:59:53 | 只看該作者
Gabriela Goldschmidt,William L. Porterr than several baseline methods including direct application of state of the art nuclei segmentation methods such as Cellpose and HoVer-Net, trained on H &E and a generative method, DeepLIIF, using two public IHC image datasets.
30#
發(fā)表于 2025-3-26 19:33:35 | 只看該作者
Gilbert D. Logan,David F. Radcliffees 3D medical images. The model can easily be conditioned on meta data, for example available patient information. We evaluate the quality of the generated images and compare our model against the 3D-StyleGAN model which is also designed for 3D medical image synthesis.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 15:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凌海市| 嘉定区| 长治县| 阳朔县| 西城区| 昭苏县| 邹城市| 南涧| 蕲春县| 巫溪县| 鲁甸县| 青铜峡市| 天镇县| 措勤县| 崇左市| 古丈县| 介休市| 东乡| 仪征市| 错那县| 仙桃市| 广南县| 花莲市| 常德市| 宁晋县| 临安市| 乐都县| 竹北市| 漠河县| 大冶市| 府谷县| 河北区| 新昌县| 突泉县| 三亚市| 昭平县| 彭阳县| 称多县| 天等县| 湘潭市| 罗山县|