找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Decay of the Fourier Transform; Analytic and Geometr Alex Iosevich,Elijah Liflyand Book 2014 Springer Basel 2014 Fourier transform.bounded

[復(fù)制鏈接]
樓主: CHAFF
21#
發(fā)表于 2025-3-25 06:19:53 | 只看該作者
22#
發(fā)表于 2025-3-25 09:56:05 | 只看該作者
23#
發(fā)表于 2025-3-25 13:41:02 | 只看該作者
24#
發(fā)表于 2025-3-25 16:45:25 | 只看該作者
25#
發(fā)表于 2025-3-25 21:36:50 | 只看該作者
26#
發(fā)表于 2025-3-26 01:42:34 | 只看該作者
Book 2014ptions and circumstances, far beyond the original .L.^2 setting. Analytic and geometric properties of the underlying functions interact in a seamless symbiosis which underlines the wide range influences and applications of the concepts under consideration.?
27#
發(fā)表于 2025-3-26 06:54:38 | 只看該作者
?Die Scham darüber, überhaupt zu sein“ of averaging over rotations in some ..-norm. This naturally leads us to the examination of certain maximal functions and as a result brings in some classical harmonic analysis that arises so often in the first part of this book.
28#
發(fā)表于 2025-3-26 10:05:25 | 只看該作者
tween the analytic and geometric approaches of Fourier theorThe Plancherel formula says that the .L.^2 norm of the function is equal to the .L.^2 norm of its Fourier transform. This implies that at least on average, the Fourier transform of an .L.^2 function decays at infinity. This book is dedicate
29#
發(fā)表于 2025-3-26 12:54:24 | 只看該作者
Geometry of the Gauss Map and Lattice Points in Convex Domains of averaging over rotations in some ..-norm. This naturally leads us to the examination of certain maximal functions and as a result brings in some classical harmonic analysis that arises so often in the first part of this book.
30#
發(fā)表于 2025-3-26 18:48:52 | 只看該作者
d to the study of the rate of this decay under various assumptions and circumstances, far beyond the original .L.^2 setting. Analytic and geometric properties of the underlying functions interact in a seamless symbiosis which underlines the wide range influences and applications of the concepts under consideration.?978-3-0348-0625-1
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 15:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
富阳市| 威海市| 曲沃县| 石屏县| 大厂| 南靖县| 克什克腾旗| 新宁县| 通州区| 钦州市| 扬中市| 图木舒克市| 潮安县| 双鸭山市| 邢台县| 高要市| 定安县| 禹州市| 巴林右旗| 广灵县| 汉川市| 淮滨县| 紫金县| 峨眉山市| 张家港市| 宝兴县| 股票| 芦溪县| 盐池县| 铅山县| 瑞金市| 长葛市| 贺州市| 林西县| 长宁县| 旅游| 双辽市| 全南县| 高淳县| 泌阳县| 博爱县|