找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Decay of the Fourier Transform; Analytic and Geometr Alex Iosevich,Elijah Liflyand Book 2014 Springer Basel 2014 Fourier transform.bounded

[復(fù)制鏈接]
查看: 45375|回復(fù): 44
樓主
發(fā)表于 2025-3-21 16:11:06 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Decay of the Fourier Transform
副標(biāo)題Analytic and Geometr
編輯Alex Iosevich,Elijah Liflyand
視頻videohttp://file.papertrans.cn/265/264111/264111.mp4
概述Only book where the decay rate of the Fourier transform is the dominant theme.Systematic examination of the concepts.Focus on interaction between the analytic and geometric approaches of Fourier theor
圖書封面Titlebook: Decay of the Fourier Transform; Analytic and Geometr Alex Iosevich,Elijah Liflyand Book 2014 Springer Basel 2014 Fourier transform.bounded
描述The Plancherel formula says that the .L.^2 norm of the function is equal to the .L.^2 norm of its Fourier transform. This implies that at least on average, the Fourier transform of an .L.^2 function decays at infinity. This book is dedicated to the study of the rate of this decay under various assumptions and circumstances, far beyond the original .L.^2 setting. Analytic and geometric properties of the underlying functions interact in a seamless symbiosis which underlines the wide range influences and applications of the concepts under consideration.?
出版日期Book 2014
關(guān)鍵詞Fourier transform; bounded variation; curvature; decay rate; spherical average
版次1
doihttps://doi.org/10.1007/978-3-0348-0625-1
isbn_ebook978-3-0348-0625-1
copyrightSpringer Basel 2014
The information of publication is updating

書目名稱Decay of the Fourier Transform影響因子(影響力)




書目名稱Decay of the Fourier Transform影響因子(影響力)學(xué)科排名




書目名稱Decay of the Fourier Transform網(wǎng)絡(luò)公開度




書目名稱Decay of the Fourier Transform網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Decay of the Fourier Transform被引頻次




書目名稱Decay of the Fourier Transform被引頻次學(xué)科排名




書目名稱Decay of the Fourier Transform年度引用




書目名稱Decay of the Fourier Transform年度引用學(xué)科排名




書目名稱Decay of the Fourier Transform讀者反饋




書目名稱Decay of the Fourier Transform讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:26:18 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:19:21 | 只看該作者
地板
發(fā)表于 2025-3-22 08:15:03 | 只看該作者
5#
發(fā)表于 2025-3-22 12:29:45 | 只看該作者
überlegungen zur Resilienz des RechtsThe method of stationary phase is the term typically applied to study of the integrals of the form . by studying properties of derivatives of the real or complex-valued phase function G(x) on the support of the cut-off .
6#
發(fā)表于 2025-3-22 15:44:45 | 只看該作者
7#
發(fā)表于 2025-3-22 20:30:26 | 只看該作者
8#
發(fā)表于 2025-3-22 22:42:45 | 只看該作者
?Die Scham darüber, überhaupt zu sein“Let B be a bounded open set in ?.. As we note in the introduction, it is a consequence of the classical method of stationary phase that if . is sufficiently smooth and has everywhere non-vanishing Gaussian curvature, then .with constants independent of ω
9#
發(fā)表于 2025-3-23 01:38:54 | 只看該作者
10#
發(fā)表于 2025-3-23 06:50:26 | 只看該作者
Basic Properties of the Fourier TransformIn this chapter we define the Fourier transform and describe its basic properties. Since this part of the book is quite standard, we go through the material quickly with an eye on developments in the subsequent chapters.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 15:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
申扎县| 郴州市| 通山县| 松溪县| 石景山区| 榆中县| 连城县| 达州市| 扎鲁特旗| 桂林市| 治多县| 竹北市| 于田县| 五峰| 威远县| 清流县| 酉阳| 隆回县| 玉屏| 侯马市| 湖南省| 石林| 房产| 乐安县| 贵南县| 新昌县| 扬州市| 阿荣旗| 商河县| 宝清县| 延吉市| 兰溪市| 修水县| 长子县| 巴南区| 德化县| 会宁县| 四会市| 石林| 肇州县| 成安县|