找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Database Systems for Advanced Applications; 28th International C Xin Wang,Maria Luisa Sapino,Hongzhi Yin Conference proceedings 2023 The Ed

[復(fù)制鏈接]
樓主: 使入伍
51#
發(fā)表于 2025-3-30 11:23:54 | 只看該作者
Disentangled Contrastive Learning for?Cross-Domain Recommendationecent research reveals that identifying domain-invariant and domain-specific features behind interactions aids in generating comprehensive user and item representations. However, we argue that existing methods fail to separate domain-invariant and domain-specific representations from each other, whi
52#
發(fā)表于 2025-3-30 15:08:56 | 只看該作者
53#
發(fā)表于 2025-3-30 18:46:10 | 只看該作者
Deep User and?Item Inter-matching Network for?CTR Predictionser interest. There are two main problems with previous works: (1) When most previous works mined interests from users’ historical behaviors, they only focus on implicit or explicit interests. (2) When most previous works mined user interests through the relationship between target users and similar
54#
發(fā)表于 2025-3-30 21:40:40 | 只看該作者
55#
發(fā)表于 2025-3-31 03:29:16 | 只看該作者
56#
發(fā)表于 2025-3-31 05:21:27 | 只看該作者
57#
發(fā)表于 2025-3-31 10:36:22 | 只看該作者
58#
發(fā)表于 2025-3-31 15:46:29 | 只看該作者
Temporal-Aware Multi-behavior Contrastive Recommendation has attracted increasing attention recently. However, most existing multi-behavior recommendations only focus on the behavioral interaction itself, attempting to extract user preferences merely by modeling behaviors, while ignoring the properties of the interaction (e.g., the temporal information).
59#
發(fā)表于 2025-3-31 20:16:11 | 只看該作者
60#
發(fā)表于 2025-3-31 22:39:14 | 只看該作者
Who Is That Man? Lad Trouble in ,, and pplications: high-quality knowledge graphs and modeling user-item relationships. However, existing methods try to solve the above challenges by adopting unified relational rules and simple node aggregation, which cannot cope with complex structured graph data. In this paper, we propose a .nowledge g
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 18:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嘉兴市| 满城县| 定西市| 贡觉县| 盐源县| 建水县| 枣强县| 子洲县| 五家渠市| 旅游| 资阳市| 嫩江县| 轮台县| 嵊泗县| 苗栗市| 黄浦区| 隆回县| 昌平区| 邯郸市| 商城县| 赤水市| 温宿县| 云霄县| 民丰县| 商洛市| 萨迦县| 广宗县| 姜堰市| 常州市| 汕头市| 达日县| 临夏市| 南宁市| 昌吉市| 库车县| 广汉市| 龙里县| 蒲江县| 濮阳市| 耒阳市| 赣州市|