找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Database Systems for Advanced Applications; 28th International C Xin Wang,Maria Luisa Sapino,Hongzhi Yin Conference proceedings 2023 The Ed

[復制鏈接]
樓主: 使入伍
11#
發(fā)表于 2025-3-23 11:53:59 | 只看該作者
Query2Trip: Dual-Debiased Learning for?Neural Trip Recommendationhe query provided by a user, Query2Trip designs a debiased adversarial learning module by conditional guidance to alleviate this selection bias from positives (visited). The latter happens as unvisited is not equivalent to negative. Query2Trip devises a debiased contrastive learning module by negati
12#
發(fā)表于 2025-3-23 16:06:26 | 只看該作者
A New Reconstruction Attack: User Latent Vector Leakage in?Federated Recommendationgenerator is designed to take random vectors as inputs and outputs generated latent vectors. The generator is trained by the distance between the real victim’s gradient updates and the generated gradient updates. We explain that the generator will successfully learn the target latent vector distribu
13#
發(fā)表于 2025-3-23 21:13:37 | 只看該作者
14#
發(fā)表于 2025-3-23 22:34:44 | 只看該作者
15#
發(fā)表于 2025-3-24 04:06:36 | 只看該作者
16#
發(fā)表于 2025-3-24 10:28:21 | 只看該作者
17#
發(fā)表于 2025-3-24 14:35:09 | 只看該作者
Intention-Aware User Modeling for?Personalized News Recommendationerence for personalized next-news recommendations. In addition to modeling users’ reading preferences, our proposed model IPNR can also capture users’ reading intentions and the transitions over intentions for better predicting the next piece of news which may interest the user. Extensive experiment
18#
發(fā)表于 2025-3-24 15:13:20 | 只看該作者
Deep User and?Item Inter-matching Network for?CTR Prediction by users’ historical behaviors, respectively. Then the User-to-User Network (UUN) is designed to mine user interests through the relationship between target users and similar users after representing the target users more accurately and richly. The experimental results show that the DUIIN model pro
19#
發(fā)表于 2025-3-24 21:50:31 | 只看該作者
Towards Lightweight Cross-Domain Sequential Recommendation via?External Attention-Enhanced Graph Coniently to capture the collaborative filtering signals of the items from both domains. To further alleviate the framework structure and aggregate the user-specific sequential pattern, we devise a novel dual-channel External Attention (EA) component, which calculates the correlation among all items vi
20#
發(fā)表于 2025-3-24 23:16:34 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-10 20:35
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
邵阳市| 清苑县| 巴林左旗| 丽江市| 额尔古纳市| 辽中县| 德阳市| 连南| 灯塔市| 庆安县| 临武县| 绿春县| 鹤壁市| 资源县| 德格县| 横峰县| 磐石市| 都兰县| 新田县| 苗栗市| 大足县| 霞浦县| 大厂| 广东省| 新乡市| 犍为县| 元氏县| 潜江市| 阿克苏市| 东兴市| 绿春县| 惠水县| 吐鲁番市| 兴城市| 延津县| 罗源县| 揭东县| 富民县| 梁平县| 鱼台县| 定边县|