找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Stream Management; Processing High-Spee Minos Garofalakis,Johannes Gehrke,Rajeev Rastogi Textbook 2016 Springer-Verlag Berlin Heidelbe

[復(fù)制鏈接]
樓主: quick-relievers
41#
發(fā)表于 2025-3-28 14:58:58 | 只看該作者
Textbook 2016frequent itemsets). Part III discusses a number of advanced topics on stream processingalgorithms, and Part IV focuses on system and language aspects of data stream processing with surveys of influential system prototypes and language designs. Part V then presents some representative applications of
42#
發(fā)表于 2025-3-28 19:47:01 | 只看該作者
43#
發(fā)表于 2025-3-29 00:49:07 | 只看該作者
Attilio Nebuloni,Giorgio Vignatin time instant and window size refers to N. This chapter presents a general technique, called the Exponential Histogram (EH) technique, that can be used to solve a wide variety of problems in the sliding-window model; typically problems that require us to maintain statistics. We will showcase this t
44#
發(fā)表于 2025-3-29 05:43:26 | 只看該作者
Masatoshi Hamanaka,Keiji Hirata,Satoshi Tojothis chapter, we provide a brief introduction to the distributed data streaming model and the Geometric Method (GM), a generic technique for effectively tracking complex queries over massive distributed streams. We also discuss several recently-proposed extensions to the basic GM framework, such as
45#
發(fā)表于 2025-3-29 08:42:05 | 只看該作者
Data Stream Management: A Brave New World,ry chapter, we provide a brief summary of some basic data streaming concepts and models, and discuss the key elements of a generic stream query processing architecture. We then give a short overview of the contents of this volume.
46#
發(fā)表于 2025-3-29 13:37:49 | 只看該作者
The Sliding-Window Computation Model and Resultsn time instant and window size refers to N. This chapter presents a general technique, called the Exponential Histogram (EH) technique, that can be used to solve a wide variety of problems in the sliding-window model; typically problems that require us to maintain statistics. We will showcase this t
47#
發(fā)表于 2025-3-29 16:44:06 | 只看該作者
Tracking Queries over Distributed Streamsthis chapter, we provide a brief introduction to the distributed data streaming model and the Geometric Method (GM), a generic technique for effectively tracking complex queries over massive distributed streams. We also discuss several recently-proposed extensions to the basic GM framework, such as
48#
發(fā)表于 2025-3-29 20:41:21 | 只看該作者
Data Stream Management978-3-540-28608-0Series ISSN 2197-9723 Series E-ISSN 2197-974X
49#
發(fā)表于 2025-3-30 02:48:49 | 只看該作者
https://doi.org/10.1007/978-3-319-60919-5am problems studied: In the mid-1980’s, Flajolet and Martin gave an effective algorithm that uses only logarithmic space. Recent work has built upon their technique, improving the accuracy guarantees on the estimation, proving lower bounds, and considering other settings such as sliding windows, distributed streams, and sensor networks.
50#
發(fā)表于 2025-3-30 04:58:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 01:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沾益县| 重庆市| 马龙县| 鄂州市| 社旗县| 嘉荫县| 彝良县| 比如县| 镶黄旗| 华坪县| 临朐县| 北票市| 阳信县| 衡南县| 宜春市| 扎赉特旗| 土默特左旗| 大姚县| 冷水江市| 池州市| 额济纳旗| 色达县| 新巴尔虎右旗| 马边| 通渭县| 南靖县| 望谟县| 教育| 沐川县| 凌源市| 淮安市| 宜章县| 社旗县| 安陆市| 双峰县| 东港市| 博客| 金坛市| 南京市| 宁海县| 玉环县|