找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Stream Management; Processing High-Spee Minos Garofalakis,Johannes Gehrke,Rajeev Rastogi Textbook 2016 Springer-Verlag Berlin Heidelbe

[復(fù)制鏈接]
樓主: quick-relievers
21#
發(fā)表于 2025-3-25 05:07:36 | 只看該作者
22#
發(fā)表于 2025-3-25 08:23:25 | 只看該作者
23#
發(fā)表于 2025-3-25 14:36:28 | 只看該作者
Clustering Data Streamsocus on clustering in a streaming scenario where a small number of data items are presented at a time and we cannot store all the data points. Thus, our algorithms are restricted to a single pass. The space restriction is typically sublinear, ., where the number of input points is ..
24#
發(fā)表于 2025-3-25 16:06:59 | 只看該作者
25#
發(fā)表于 2025-3-25 21:20:06 | 只看該作者
Ron Elber,Benoit Roux,Roberto Olenderm. This chapter surveys some basic sampling and inference techniques for data streams. We focus on general methods for materializing a sample; later chapters provide specialized sampling methods for specific analytic tasks.
26#
發(fā)表于 2025-3-26 02:36:32 | 只看該作者
https://doi.org/10.1007/978-3-319-60919-5other application is to detecting network anomalies by monitoring network traffic. We describe a variety of approaches that have been proposed to solve these problems. Our goal is to give a flavor of the various techniques that have been used in this area.
27#
發(fā)表于 2025-3-26 07:38:41 | 只看該作者
Multiscale Computational Materials Science data from the data stream to make each decision required by the learning process. The method is applicable to essentially any induction algorithm based on discrete search. In this chapter, we illustrate the use of our method by applying it to what is perhaps the most widely used form of data mining: decision tree induction.
28#
發(fā)表于 2025-3-26 12:00:53 | 只看該作者
29#
發(fā)表于 2025-3-26 16:29:54 | 只看該作者
30#
發(fā)表于 2025-3-26 20:39:17 | 只看該作者
Data-Stream Sampling: Basic Techniques and Resultsm. This chapter surveys some basic sampling and inference techniques for data streams. We focus on general methods for materializing a sample; later chapters provide specialized sampling methods for specific analytic tasks.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
渝中区| 顺义区| 石屏县| 海安县| 焉耆| 班戈县| 黑山县| 新营市| 都昌县| 贺州市| 海门市| 丰城市| 武汉市| 武陟县| 周至县| 贺兰县| 鄯善县| 西宁市| 牟定县| 台江县| 中山市| 武威市| 和静县| 弥勒县| 开封县| 潼南县| 微山县| 金堂县| 青浦区| 广灵县| 晋城| 房山区| 平果县| 登封市| 珲春市| 眉山市| 安泽县| 云安县| 兰州市| 平度市| 贵南县|