找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Stream Management; Processing High-Spee Minos Garofalakis,Johannes Gehrke,Rajeev Rastogi Textbook 2016 Springer-Verlag Berlin Heidelbe

[復制鏈接]
樓主: quick-relievers
21#
發(fā)表于 2025-3-25 05:07:36 | 只看該作者
22#
發(fā)表于 2025-3-25 08:23:25 | 只看該作者
23#
發(fā)表于 2025-3-25 14:36:28 | 只看該作者
Clustering Data Streamsocus on clustering in a streaming scenario where a small number of data items are presented at a time and we cannot store all the data points. Thus, our algorithms are restricted to a single pass. The space restriction is typically sublinear, ., where the number of input points is ..
24#
發(fā)表于 2025-3-25 16:06:59 | 只看該作者
25#
發(fā)表于 2025-3-25 21:20:06 | 只看該作者
Ron Elber,Benoit Roux,Roberto Olenderm. This chapter surveys some basic sampling and inference techniques for data streams. We focus on general methods for materializing a sample; later chapters provide specialized sampling methods for specific analytic tasks.
26#
發(fā)表于 2025-3-26 02:36:32 | 只看該作者
https://doi.org/10.1007/978-3-319-60919-5other application is to detecting network anomalies by monitoring network traffic. We describe a variety of approaches that have been proposed to solve these problems. Our goal is to give a flavor of the various techniques that have been used in this area.
27#
發(fā)表于 2025-3-26 07:38:41 | 只看該作者
Multiscale Computational Materials Science data from the data stream to make each decision required by the learning process. The method is applicable to essentially any induction algorithm based on discrete search. In this chapter, we illustrate the use of our method by applying it to what is perhaps the most widely used form of data mining: decision tree induction.
28#
發(fā)表于 2025-3-26 12:00:53 | 只看該作者
29#
發(fā)表于 2025-3-26 16:29:54 | 只看該作者
30#
發(fā)表于 2025-3-26 20:39:17 | 只看該作者
Data-Stream Sampling: Basic Techniques and Resultsm. This chapter surveys some basic sampling and inference techniques for data streams. We focus on general methods for materializing a sample; later chapters provide specialized sampling methods for specific analytic tasks.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 22:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
尤溪县| 镇坪县| 长宁区| 沙河市| 廊坊市| 七台河市| 阿拉善左旗| 绵竹市| 黑水县| 兰考县| 定安县| 东至县| 五峰| 济源市| 垦利县| 富顺县| 哈巴河县| 桐梓县| 张家口市| 南部县| 尼勒克县| 肥城市| 渝中区| 威宁| 夏津县| 城步| 夏河县| 呼伦贝尔市| 黄陵县| 澄城县| 桑日县| 定边县| 兴义市| 南溪县| 镇雄县| 富平县| 汨罗市| 宾阳县| 武隆县| 沙坪坝区| 南和县|