找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Stream Management; Processing High-Spee Minos Garofalakis,Johannes Gehrke,Rajeev Rastogi Textbook 2016 Springer-Verlag Berlin Heidelbe

[復(fù)制鏈接]
查看: 34508|回復(fù): 54
樓主
發(fā)表于 2025-3-21 17:51:08 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Data Stream Management
副標(biāo)題Processing High-Spee
編輯Minos Garofalakis,Johannes Gehrke,Rajeev Rastogi
視頻videohttp://file.papertrans.cn/264/263155/263155.mp4
概述Comprehensive introduction to the algorithmic and theoretical foundations of data stream processing – from basic mathematical models, algorithms, and analytics, and progressing to more advanced stream
叢書名稱Data-Centric Systems and Applications
圖書封面Titlebook: Data Stream Management; Processing High-Spee Minos Garofalakis,Johannes Gehrke,Rajeev Rastogi Textbook 2016 Springer-Verlag Berlin Heidelbe
描述.This volume focuses on the theory and practice of .data stream management., and the novel challenges this emerging domain poses for data-management algorithms, systems, and applications. The collection of chapters, contributed by authorities in the field, offers a comprehensive introduction to both the algorithmic/theoretical foundations of data streams, as well as the streaming systems and applications built in different domains..A short introductory chapter provides a brief summary of some basic data streaming concepts and models, and discusses the key elements of a generic stream query processing architecture. Subsequently, Part I focuses on basic streaming algorithms for some key analytics functions (e.g., quantiles, norms, join aggregates, heavy hitters) over streaming data. Part II then examines important techniques for basic stream mining tasks (e.g., clustering, classification, frequent itemsets). Part III discusses a number of advanced topics on stream processingalgorithms, and Part IV focuses on system and language aspects of data stream processing with surveys of influential system prototypes and language designs. Part V then presents some representative applications of
出版日期Textbook 2016
關(guān)鍵詞Data streams; Data model extensions; Database management system engines; Data mining; Sensor networks; XM
版次1
doihttps://doi.org/10.1007/978-3-540-28608-0
isbn_softcover978-3-662-56837-8
isbn_ebook978-3-540-28608-0Series ISSN 2197-9723 Series E-ISSN 2197-974X
issn_series 2197-9723
copyrightSpringer-Verlag Berlin Heidelberg 2016
The information of publication is updating

書目名稱Data Stream Management影響因子(影響力)




書目名稱Data Stream Management影響因子(影響力)學(xué)科排名




書目名稱Data Stream Management網(wǎng)絡(luò)公開度




書目名稱Data Stream Management網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Data Stream Management被引頻次




書目名稱Data Stream Management被引頻次學(xué)科排名




書目名稱Data Stream Management年度引用




書目名稱Data Stream Management年度引用學(xué)科排名




書目名稱Data Stream Management讀者反饋




書目名稱Data Stream Management讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:40:21 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:34:15 | 只看該作者
Quantiles and Equi-depth Histograms over Streams the 99-percentile, or the quartiles of a set are examples of quantile queries. Many database optimization problems involve approximate quantile computations over large data sets. Query optimizers use quantile estimates to estimate the size of intermediate results and choose an efficient plan among
地板
發(fā)表于 2025-3-22 08:10:17 | 只看該作者
Join Sizes, Frequency Moments, and Applicationslem is at the heart of a wide variety of other problems, both in databases/data streams and beyond, including approximating range-query aggregates, quantiles, and heavy-hitter elements, and building approximate histograms and wavelet representations. Our discussion focuses on efficient, sketch-based
5#
發(fā)表于 2025-3-22 09:13:50 | 只看該作者
Top-, Frequent Item Maintenance over Streamsthat occur most frequently in one pass over the data stream using a small amount of storage space. Such problems arise in a variety of settings. For example, a search engine might be interested in gathering statistics about its query stream and in particular, identifying the most popular queries. An
6#
發(fā)表于 2025-3-22 16:33:30 | 只看該作者
7#
發(fā)表于 2025-3-22 20:56:24 | 只看該作者
8#
發(fā)表于 2025-3-22 22:31:53 | 只看該作者
Clustering Data Streamsch that, under some definition of “similarity,” similar items are in the same group and dissimilar items are in different groups. In this chapter we focus on clustering in a streaming scenario where a small number of data items are presented at a time and we cannot store all the data points. Thus, o
9#
發(fā)表于 2025-3-23 01:54:38 | 只看該作者
Mining Decision Trees from Streams. Mining these continuous data streams brings unique opportunities, but also new challenges. We present a method that can semi-automatically enhance a wide class of existing learning algorithms so they can learn from such high-speed data streams in real time. The method works by sampling just enough
10#
發(fā)表于 2025-3-23 05:56:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 03:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永和县| 津市市| 昭觉县| 鄂温| 绥芬河市| 甘泉县| 新晃| 娱乐| 三明市| 泗阳县| 穆棱市| 平谷区| 民勤县| 琼海市| 芦溪县| 景谷| 剑川县| 密山市| 伊吾县| 武穴市| 兴和县| 凉山| 吴堡县| 漳浦县| 旅游| 新田县| 手游| 榆树市| 琼结县| 旅游| 武强县| 汝南县| 马龙县| 杭锦旗| 葫芦岛市| 扎兰屯市| 喀喇| 喜德县| 大新县| 嘉荫县| 武强县|