找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Management, Analytics and Innovation; Proceedings of ICDMA Neha Sharma,Amlan Chakrabarti,Jan Martinovic Conference proceedings 2021 Sp

[復制鏈接]
查看: 30832|回復: 56
樓主
發(fā)表于 2025-3-21 19:36:11 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Data Management, Analytics and Innovation
副標題Proceedings of ICDMA
編輯Neha Sharma,Amlan Chakrabarti,Jan Martinovic
視頻videohttp://file.papertrans.cn/263/262878/262878.mp4
概述Presents cutting-edge research in the fields of data management, analytics, and innovation.Gathers the outcomes of ICDMAI 2020, held in New Delhi, India.Offers a valuable reference resource for resear
叢書名稱Advances in Intelligent Systems and Computing
圖書封面Titlebook: Data Management, Analytics and Innovation; Proceedings of ICDMA Neha Sharma,Amlan Chakrabarti,Jan Martinovic Conference proceedings 2021 Sp
描述This book presents the latest findings in the areas of data management and smart computing, big data management, artificial intelligence and data analytics, along with advances in network technologies. Gathering peer-reviewed research papers presented at the Fourth International Conference on Data Management, Analytics and Innovation (ICDMAI 2020), held on 17–19 January 2020 at the United Services Institute (USI), New Delhi, India, it addresses cutting-edge topics and discusses challenges and solutions for future development. Featuring original, unpublished contributions by respected experts from around the globe, the book is mainly intended for a professional audience of researchers and practitioners in academia and industry.?
出版日期Conference proceedings 2021
關鍵詞Data Exchange; Data Management; Agricultural Informatics; Computational Economics; Information Ecology; I
版次1
doihttps://doi.org/10.1007/978-981-15-5619-7
isbn_softcover978-981-15-5618-0
isbn_ebook978-981-15-5619-7Series ISSN 2194-5357 Series E-ISSN 2194-5365
issn_series 2194-5357
copyrightSpringer Nature Singapore Pte Ltd. 2021
The information of publication is updating

書目名稱Data Management, Analytics and Innovation影響因子(影響力)




書目名稱Data Management, Analytics and Innovation影響因子(影響力)學科排名




書目名稱Data Management, Analytics and Innovation網(wǎng)絡公開度




書目名稱Data Management, Analytics and Innovation網(wǎng)絡公開度學科排名




書目名稱Data Management, Analytics and Innovation被引頻次




書目名稱Data Management, Analytics and Innovation被引頻次學科排名




書目名稱Data Management, Analytics and Innovation年度引用




書目名稱Data Management, Analytics and Innovation年度引用學科排名




書目名稱Data Management, Analytics and Innovation讀者反饋




書目名稱Data Management, Analytics and Innovation讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:13:14 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:11:10 | 只看該作者
地板
發(fā)表于 2025-3-22 07:29:35 | 只看該作者
Automatic Standardization of Data Based on Machine Learning and Natural Language Processingintegrated from various ocular sources and standardized to have a uniformity; The integrated standard data set is then processed and transformed to generate features for machine learning models automatically; The predictive machine learning models can be trained with the stratified random sampled da
5#
發(fā)表于 2025-3-22 11:16:33 | 只看該作者
Analysis of GHI Forecasting Using Seasonal ARIMA (GHI) is the strongest predictor of actual generation. Hence, the solar energy prediction problem can be attempted by predicting GHI. Auto-Regressive Integrated Moving Average (ARIMA) is one of the fundamental models for time series prediction. India is a country with significant solar energy possi
6#
發(fā)表于 2025-3-22 13:48:04 | 只看該作者
7#
發(fā)表于 2025-3-22 20:52:42 | 只看該作者
Application of Bayesian Automated Hyperparameter Tuning on Classifiers Predicting Customer Retentiontomated Hyperparameter Tuning, with Tree-structured Parzen Estimator, has been performed on all of nine ML classifiers predicting the customers likely to be retained by the bank. After visualizing the nature of dataset and its constraints of class imbalance and limited training examples, Feature Eng
8#
發(fā)表于 2025-3-22 22:38:34 | 只看該作者
Quantum Machine Learning: A Review and Current Statusum machine learning investigates how results from the quantum world can be used to solve problems from machine learning. The amount of data needed to reliably train a classical computation model is evergrowing and reaching the limits which normal computing devices can handle. In such a scenario, qua
9#
發(fā)表于 2025-3-23 03:29:48 | 只看該作者
10#
發(fā)表于 2025-3-23 08:18:10 | 只看該作者
An Efficient Algorithm for Complete Linkage Clustering with a Merging Thresholdp at a high speed. Apart from collecting this avalanche of data, another major problem is extracting useful information from it. Clustering is a highly powerful data mining tool capable of finding hidden information from a totally unlabelled dataset. Complete Linkage Clustering is a distance-based H
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 18:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
乌拉特前旗| 东方市| 水城县| 岳普湖县| 会泽县| 和林格尔县| 日土县| 乌恰县| 平陆县| 和顺县| 辽中县| 大厂| 黔西县| 龙口市| 大姚县| 华坪县| 田东县| 武强县| 灵丘县| 聂拉木县| 永平县| 泰兴市| 和田县| 兰西县| 城固县| 任丘市| 宜章县| 尚义县| 五大连池市| 天峻县| 儋州市| 施秉县| 泊头市| 阿荣旗| 宁乡县| 曲松县| 抚顺市| 长治县| 松滋市| 绿春县| 山东|