找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Management, Analytics and Innovation; Proceedings of ICDMA Neha Sharma,Amlan Chakrabarti,Jan Martinovic Conference proceedings 2021 Sp

[復(fù)制鏈接]
查看: 30838|回復(fù): 56
樓主
發(fā)表于 2025-3-21 19:36:11 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Data Management, Analytics and Innovation
副標(biāo)題Proceedings of ICDMA
編輯Neha Sharma,Amlan Chakrabarti,Jan Martinovic
視頻videohttp://file.papertrans.cn/263/262878/262878.mp4
概述Presents cutting-edge research in the fields of data management, analytics, and innovation.Gathers the outcomes of ICDMAI 2020, held in New Delhi, India.Offers a valuable reference resource for resear
叢書名稱Advances in Intelligent Systems and Computing
圖書封面Titlebook: Data Management, Analytics and Innovation; Proceedings of ICDMA Neha Sharma,Amlan Chakrabarti,Jan Martinovic Conference proceedings 2021 Sp
描述This book presents the latest findings in the areas of data management and smart computing, big data management, artificial intelligence and data analytics, along with advances in network technologies. Gathering peer-reviewed research papers presented at the Fourth International Conference on Data Management, Analytics and Innovation (ICDMAI 2020), held on 17–19 January 2020 at the United Services Institute (USI), New Delhi, India, it addresses cutting-edge topics and discusses challenges and solutions for future development. Featuring original, unpublished contributions by respected experts from around the globe, the book is mainly intended for a professional audience of researchers and practitioners in academia and industry.?
出版日期Conference proceedings 2021
關(guān)鍵詞Data Exchange; Data Management; Agricultural Informatics; Computational Economics; Information Ecology; I
版次1
doihttps://doi.org/10.1007/978-981-15-5619-7
isbn_softcover978-981-15-5618-0
isbn_ebook978-981-15-5619-7Series ISSN 2194-5357 Series E-ISSN 2194-5365
issn_series 2194-5357
copyrightSpringer Nature Singapore Pte Ltd. 2021
The information of publication is updating

書目名稱Data Management, Analytics and Innovation影響因子(影響力)




書目名稱Data Management, Analytics and Innovation影響因子(影響力)學(xué)科排名




書目名稱Data Management, Analytics and Innovation網(wǎng)絡(luò)公開度




書目名稱Data Management, Analytics and Innovation網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Data Management, Analytics and Innovation被引頻次




書目名稱Data Management, Analytics and Innovation被引頻次學(xué)科排名




書目名稱Data Management, Analytics and Innovation年度引用




書目名稱Data Management, Analytics and Innovation年度引用學(xué)科排名




書目名稱Data Management, Analytics and Innovation讀者反饋




書目名稱Data Management, Analytics and Innovation讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:13:14 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:11:10 | 只看該作者
地板
發(fā)表于 2025-3-22 07:29:35 | 只看該作者
Automatic Standardization of Data Based on Machine Learning and Natural Language Processingintegrated from various ocular sources and standardized to have a uniformity; The integrated standard data set is then processed and transformed to generate features for machine learning models automatically; The predictive machine learning models can be trained with the stratified random sampled da
5#
發(fā)表于 2025-3-22 11:16:33 | 只看該作者
Analysis of GHI Forecasting Using Seasonal ARIMA (GHI) is the strongest predictor of actual generation. Hence, the solar energy prediction problem can be attempted by predicting GHI. Auto-Regressive Integrated Moving Average (ARIMA) is one of the fundamental models for time series prediction. India is a country with significant solar energy possi
6#
發(fā)表于 2025-3-22 13:48:04 | 只看該作者
7#
發(fā)表于 2025-3-22 20:52:42 | 只看該作者
Application of Bayesian Automated Hyperparameter Tuning on Classifiers Predicting Customer Retentiontomated Hyperparameter Tuning, with Tree-structured Parzen Estimator, has been performed on all of nine ML classifiers predicting the customers likely to be retained by the bank. After visualizing the nature of dataset and its constraints of class imbalance and limited training examples, Feature Eng
8#
發(fā)表于 2025-3-22 22:38:34 | 只看該作者
Quantum Machine Learning: A Review and Current Statusum machine learning investigates how results from the quantum world can be used to solve problems from machine learning. The amount of data needed to reliably train a classical computation model is evergrowing and reaching the limits which normal computing devices can handle. In such a scenario, qua
9#
發(fā)表于 2025-3-23 03:29:48 | 只看該作者
10#
發(fā)表于 2025-3-23 08:18:10 | 只看該作者
An Efficient Algorithm for Complete Linkage Clustering with a Merging Thresholdp at a high speed. Apart from collecting this avalanche of data, another major problem is extracting useful information from it. Clustering is a highly powerful data mining tool capable of finding hidden information from a totally unlabelled dataset. Complete Linkage Clustering is a distance-based H
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 01:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜君县| 灵寿县| 二手房| 彭山县| 唐河县| 丹棱县| 安西县| 成武县| 鹤庆县| 海安县| 察雅县| 凤城市| 周宁县| 洛扎县| 广汉市| 息烽县| 芜湖县| 汉寿县| 平邑县| 新建县| 台北县| 清苑县| 灵石县| 荃湾区| 高台县| 巧家县| 东明县| 淳化县| 罗山县| 岢岚县| 梓潼县| 宜兴市| 新津县| 义乌市| 海兴县| 灵璧县| 上高县| 元江| 绍兴县| 南漳县| 东乡族自治县|