找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Lake Analytics on Microsoft Azure; A Practitioner‘s Gui Harsh Chawla,Pankaj Khattar Book 2020 Harsh Chawla and Pankaj Khattar 2020 Azu

[復(fù)制鏈接]
樓主: 指責(zé)
11#
發(fā)表于 2025-3-23 10:30:11 | 只看該作者
Summary,ology stack on Microsoft Azure, this book could be an excellent source of information on various architecture patterns and services that could be consumed to build data pipelines. However, if the reader is a beginner into the field of data engineering, this book has lots of exercises along with the
12#
發(fā)表于 2025-3-23 14:46:50 | 只看該作者
Sergio Lara-Bercial,John Bales,Julian Northtions can build, scale, and consume these solutions with a faster pace and economical cost. Since there is a fair understanding of data lakes and data analytics basics by now, this chapter discusses the role of a public cloud to disrupt the market and to accelerate the adoption of data analytics solutions.
13#
發(fā)表于 2025-3-23 20:13:38 | 只看該作者
Cristina Bianchi,Maureen Steeles applications through an ETL process for further processing. In this chapter, the discussion is around what role the data storage layer in data analytics plays and various storage options available on Microsoft Azure.
14#
發(fā)表于 2025-3-23 22:52:26 | 只看該作者
Oana A. David,Radu ?ofl?u,Silviu Matu through visualization or any dependent applications. The entire data journey is planned, based on the target use case. In this chapter, the discussion is on the various scenarios that are applicable in this phase, and how to decide on technologies based on the cost and efficiency.
15#
發(fā)表于 2025-3-24 03:10:59 | 只看該作者
16#
發(fā)表于 2025-3-24 09:57:39 | 只看該作者
17#
發(fā)表于 2025-3-24 13:09:25 | 只看該作者
Sergio Lara-Bercial,John Bales,Julian Northtions can build, scale, and consume these solutions with a faster pace and economical cost. Since there is a fair understanding of data lakes and data analytics basics by now, this chapter discusses the role of a public cloud to disrupt the market and to accelerate the adoption of data analytics sol
18#
發(fā)表于 2025-3-24 15:47:06 | 只看該作者
19#
發(fā)表于 2025-3-24 20:20:38 | 只看該作者
20#
發(fā)表于 2025-3-24 23:53:42 | 只看該作者
Oana A. David,Radu ?ofl?u,Silviu Matuces is merged and crunched together (Figure 6-1). The transformed data further gets infused with machine learning models or is sent to the model and serve phase. The entire data journey is planned, based on the target use case. This phase has been split into two chapters. In this chapter, the discus
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
秀山| 临漳县| 图木舒克市| 连江县| 平昌县| 河东区| 巨野县| 玉树县| 金湖县| 马尔康县| 舒兰市| 保康县| 吴堡县| 德惠市| 二连浩特市| 黄陵县| 密山市| 花垣县| 柳江县| 吉安县| 古丈县| 雅江县| 宜良县| 天气| 永善县| 东明县| 顺义区| 上饶市| 泰安市| 交城县| 酒泉市| 韶山市| 武清区| 湛江市| 陵水| 拜泉县| 襄垣县| 连州市| 宁武县| 凭祥市| 康乐县|