找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Lake Analytics on Microsoft Azure; A Practitioner‘s Gui Harsh Chawla,Pankaj Khattar Book 2020 Harsh Chawla and Pankaj Khattar 2020 Azu

[復(fù)制鏈接]
查看: 18979|回復(fù): 42
樓主
發(fā)表于 2025-3-21 19:45:32 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Data Lake Analytics on Microsoft Azure
副標(biāo)題A Practitioner‘s Gui
編輯Harsh Chawla,Pankaj Khattar
視頻videohttp://file.papertrans.cn/263/262846/262846.mp4
概述Covers the life cycle of data, from building pipelines to data analytics and visualizations.Provides use cases for real-time and batch mode processing.Shows you how to infuse machine learning into rea
圖書封面Titlebook: Data Lake Analytics on Microsoft Azure; A Practitioner‘s Gui Harsh Chawla,Pankaj Khattar Book 2020 Harsh Chawla and Pankaj Khattar 2020 Azu
描述.Get a 360-degree view of how the journey of data analytics solutions has evolved from monolithic data stores and enterprise data warehouses to data lakes and modern data warehouses. You will.This book includes comprehensive coverage of how:.To architect data lake analytics solutions by choosing suitable technologies available on Microsoft Azure.The advent of microservices applications covering ecommerce or modern solutions built on IoT and how real-time streaming data has completely disrupted this ecosystem.These data analytics solutions have been transformed from solely understanding the trends from historical data to building predictions by infusing machine learning technologies into the solutions.Data platform professionals who have been working on relational data stores, non-relational data stores, and big data technologies will find the content in this book useful. The book also can help you start your journey into the data engineer world as it provides an overview of advanced data analytics and touches on data science concepts and various artificial intelligence and machine learning technologies available on Microsoft Azure..What Will You Learn.You will understand the:.Conce
出版日期Book 2020
關(guān)鍵詞Azure data factory; lambda; kappa; azure databricks; spark; NoSQL; Power BI; Kubernets
版次1
doihttps://doi.org/10.1007/978-1-4842-6252-8
isbn_softcover978-1-4842-6251-1
isbn_ebook978-1-4842-6252-8
copyrightHarsh Chawla and Pankaj Khattar 2020
The information of publication is updating

書目名稱Data Lake Analytics on Microsoft Azure影響因子(影響力)




書目名稱Data Lake Analytics on Microsoft Azure影響因子(影響力)學(xué)科排名




書目名稱Data Lake Analytics on Microsoft Azure網(wǎng)絡(luò)公開度




書目名稱Data Lake Analytics on Microsoft Azure網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Data Lake Analytics on Microsoft Azure被引頻次




書目名稱Data Lake Analytics on Microsoft Azure被引頻次學(xué)科排名




書目名稱Data Lake Analytics on Microsoft Azure年度引用




書目名稱Data Lake Analytics on Microsoft Azure年度引用學(xué)科排名




書目名稱Data Lake Analytics on Microsoft Azure讀者反饋




書目名稱Data Lake Analytics on Microsoft Azure讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:47:37 | 只看該作者
Book 2020n help you start your journey into the data engineer world as it provides an overview of advanced data analytics and touches on data science concepts and various artificial intelligence and machine learning technologies available on Microsoft Azure..What Will You Learn.You will understand the:.Conce
板凳
發(fā)表于 2025-3-22 01:54:44 | 只看該作者
Data Lake Analytics Concepts,nessing the power of this data. Not only that, with the democratization of .rtificial .ntelligence and .achine .earning, building predictions has become easier. The infusion of AI/ML with data has given lots of advantages to plan future requirements or actions. Some of the classic use cases are cust
地板
發(fā)表于 2025-3-22 08:26:24 | 只看該作者
Building Blocks of Data Analytics,t-moving consumer goods) are heavily dependent on their data analytics solutions. A few examples of the outcomes of data analytics are customer 360-degree, real-time recommendations, fraud analytics, and predictive maintenance solutions. This chapter is designed to share an overview of the building
5#
發(fā)表于 2025-3-22 10:51:18 | 只看該作者
6#
發(fā)表于 2025-3-22 12:57:07 | 只看該作者
7#
發(fā)表于 2025-3-22 19:20:48 | 只看該作者
Data Storage,s applications through an ETL process for further processing. In this chapter, the discussion is around what role the data storage layer in data analytics plays and various storage options available on Microsoft Azure.
8#
發(fā)表于 2025-3-22 21:19:00 | 只看該作者
Data Preparation and Training Part I,ces is merged and crunched together (Figure 6-1). The transformed data further gets infused with machine learning models or is sent to the model and serve phase. The entire data journey is planned, based on the target use case. This phase has been split into two chapters. In this chapter, the discus
9#
發(fā)表于 2025-3-23 05:01:23 | 只看該作者
Data Preparation and Training Part II,es brought lots of innovative technologies for data analytics. How the transformation from data analytics and enterprise data warehouse to modern data warehouse and advanced data analytics has happened. In part I of the prep and train phase, the discussion was on the modern data warehouse. In this c
10#
發(fā)表于 2025-3-23 07:56:40 | 只看該作者
Model and Serve, through visualization or any dependent applications. The entire data journey is planned, based on the target use case. In this chapter, the discussion is on the various scenarios that are applicable in this phase, and how to decide on technologies based on the cost and efficiency.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 03:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新宾| 昭平县| 乡宁县| 开江县| 二连浩特市| 新竹县| 甘谷县| 镇康县| 响水县| 克山县| 西充县| 额尔古纳市| 敖汉旗| 阿拉善左旗| 恩施市| 雅安市| 布拖县| 辛集市| 德化县| 昭平县| 淮阳县| 海南省| 克什克腾旗| 临湘市| 宿州市| 禹城市| 阳江市| 柘城县| 集安市| 湖州市| 兴仁县| 湖南省| 桃园市| 绍兴市| 云龙县| 呼伦贝尔市| 深圳市| 洛隆县| 定远县| 久治县| 阿拉善右旗|