找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Augmentation, Labelling, and Imperfections; Second MICCAI Worksh Hien V. Nguyen,Sharon X. Huang,Yuan Xue Conference proceedings 2022 T

[復(fù)制鏈接]
樓主: 銀河
41#
發(fā)表于 2025-3-28 17:21:14 | 只看該作者
,Long-Tailed Classification of?Thorax Diseases on?Chest X-Ray: A New Benchmark Study,ning methods for medical image classification. The benchmark consists of two chest X-ray datasets for 19- and 20-way thorax disease classification, containing classes with as many as 53,000 and as few as 7 labeled training images. We evaluate both standard and state-of-the-art long-tailed learning m
42#
發(fā)表于 2025-3-28 21:17:02 | 只看該作者
43#
發(fā)表于 2025-3-28 23:43:17 | 只看該作者
44#
發(fā)表于 2025-3-29 07:05:30 | 只看該作者
,Noisy Label Classification Using Label Noise Selection with?Test-Time Augmentation Cross-Entropy anlabel noise selection process. Moreover, the proposed NoiseMix not only outperformed the state-of-the-art methods in the classification performance but also showed the most robustness to the label noise in the classifier learning.
45#
發(fā)表于 2025-3-29 07:14:59 | 只看該作者
,CSGAN: Synthesis-Aided Brain MRI Segmentation on?6-Month Infants,E) module in the generators of CycleGAN, by embedding semantic information into networks to keep the brain anatomical structure consistent across 6-month and 12-month brain MRI. After that, we train an initial segmentation model on these augmented data to overcome the isointense problem in 6-months
46#
發(fā)表于 2025-3-29 14:50:31 | 只看該作者
,A Stratified Cascaded Approach for?Brain Tumor Segmentation with?the?Aid of?Multi-modal Synthetic Docalization module, focusing the training and inference in the vicinity of the tumor. Finally, to identify which tumor grade segmentation model to utilize at inference time, we train a dense, attention-based 3D classification model. The obtained results suggest that both stratification and the addit
47#
發(fā)表于 2025-3-29 18:18:01 | 只看該作者
48#
發(fā)表于 2025-3-29 20:38:10 | 只看該作者
Climate Change Signals and Responseevaluate data quality based on the marginal change of the largest singular value after excluding the data point in the dataset. We conduct extensive experiments on a pathology dataset. Our results indicate the effectiveness and efficiency of our proposed methods for selecting the most valuable data to label.
49#
發(fā)表于 2025-3-30 01:42:06 | 只看該作者
50#
發(fā)表于 2025-3-30 05:59:57 | 只看該作者
,Disentangling a?Single MR Modality,ic resonance images. Moreover, we propose a new information-based metric to quantitatively evaluate disentanglement. Comparisons over existing disentangling methods demonstrate that the proposed method achieves superior performance in disentanglement and cross-domain image-to-image translation tasks.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 22:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湖北省| 东乡族自治县| 曲水县| 沙雅县| 沁水县| 两当县| 乌拉特前旗| 宁阳县| 阿荣旗| 湖北省| 沧州市| 河南省| 巩留县| 玉环县| 云浮市| 惠水县| 得荣县| 宜良县| 西峡县| 米脂县| 增城市| 敦煌市| 威远县| 兴城市| 建德市| 石林| 西乡县| 东阳市| 青阳县| 茶陵县| 左贡县| 和林格尔县| 淄博市| 连云港市| 邛崃市| 博野县| 和田市| 莆田市| 苍溪县| 岳普湖县| 冷水江市|