找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Augmentation, Labelling, and Imperfections; Second MICCAI Worksh Hien V. Nguyen,Sharon X. Huang,Yuan Xue Conference proceedings 2022 T

[復(fù)制鏈接]
查看: 13544|回復(fù): 51
樓主
發(fā)表于 2025-3-21 17:22:33 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Data Augmentation, Labelling, and Imperfections
副標(biāo)題Second MICCAI Worksh
編輯Hien V. Nguyen,Sharon X. Huang,Yuan Xue
視頻videohttp://file.papertrans.cn/263/262735/262735.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Data Augmentation, Labelling, and Imperfections; Second MICCAI Worksh Hien V. Nguyen,Sharon X. Huang,Yuan Xue Conference proceedings 2022 T
描述This book constitutes the refereed proceedings of the Second MICCAI Workshop on Data Augmentation, Labelling, and Imperfections, DALI 2022, held in conjunction with MICCAI 2022, in Singapore in September 2022..DALI 2022 accepted 12 papers from the 22 submissions that were reviewed. The papers focus on rigorous study of medical data related to machine learning systems..
出版日期Conference proceedings 2022
關(guān)鍵詞artificial intelligence; bioinformatics; color image processing; color images; computer systems; computer
版次1
doihttps://doi.org/10.1007/978-3-031-17027-0
isbn_softcover978-3-031-17026-3
isbn_ebook978-3-031-17027-0Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Data Augmentation, Labelling, and Imperfections影響因子(影響力)




書目名稱Data Augmentation, Labelling, and Imperfections影響因子(影響力)學(xué)科排名




書目名稱Data Augmentation, Labelling, and Imperfections網(wǎng)絡(luò)公開度




書目名稱Data Augmentation, Labelling, and Imperfections網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Data Augmentation, Labelling, and Imperfections被引頻次




書目名稱Data Augmentation, Labelling, and Imperfections被引頻次學(xué)科排名




書目名稱Data Augmentation, Labelling, and Imperfections年度引用




書目名稱Data Augmentation, Labelling, and Imperfections年度引用學(xué)科排名




書目名稱Data Augmentation, Labelling, and Imperfections讀者反饋




書目名稱Data Augmentation, Labelling, and Imperfections讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:10:53 | 只看該作者
Data Augmentation, Labelling, and Imperfections978-3-031-17027-0Series ISSN 0302-9743 Series E-ISSN 1611-3349
板凳
發(fā)表于 2025-3-22 00:27:19 | 只看該作者
地板
發(fā)表于 2025-3-22 06:49:55 | 只看該作者
5#
發(fā)表于 2025-3-22 10:35:37 | 只看該作者
6#
發(fā)表于 2025-3-22 15:07:05 | 只看該作者
7#
發(fā)表于 2025-3-22 17:05:41 | 只看該作者
8#
發(fā)表于 2025-3-22 22:13:14 | 只看該作者
Muhammad Sabaruddin Sinapoy,Susanti Djalantesuch studies, CTh estimation software packages are employed to estimate CTh from T1-weighted (T1-w) brain MRI scans. Since commonly used software packages (e.g. FreeSurfer) are time-consuming, the fast-inference Machine Learning (ML) CTh estimation solutions have gained much popularity. Recently, se
9#
發(fā)表于 2025-3-23 02:09:53 | 只看該作者
Ocean Heat Content and Rising Sea Level such effort by prioritizing which samples are best to annotate in order to maximize the performance of the task model. While frameworks for active learning have been widely explored in the context of classification of natural images, they have been only sparsely used in medical image segmentation.
10#
發(fā)表于 2025-3-23 08:12:03 | 只看該作者
Climate Change Science: A Modern Synthesis tasks. Current methods learn disentangled representations using either paired multi-modal images with the same underlying anatomy or auxiliary labels?(e.g., manual delineations) to provide inductive bias for disentanglement. However, these requirements could significantly increase the time and cost
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 00:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
淮阳县| 大余县| 太康县| 屏山县| 宁国市| 盘山县| 治多县| 错那县| 延川县| 贺州市| 黑山县| 肇东市| 迁安市| 麻城市| 多伦县| 商南县| 休宁县| 吉木萨尔县| 临湘市| 尚志市| 墨脱县| 新野县| 龙胜| 大冶市| 福海县| 汝阳县| 天等县| 河间市| 古田县| 延安市| 礼泉县| 探索| 延寿县| 塘沽区| 汪清县| 盘山县| 应用必备| 衡南县| 正宁县| 正定县| 萝北县|