找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cyclotomic Fields and Zeta Values; J. Coates,R. Sujatha Book 2006 Springer-Verlag Berlin Heidelberg 2006 Arithmetic.Iwasawa theory.Lie.alg

[復制鏈接]
查看: 53638|回復: 35
樓主
發(fā)表于 2025-3-21 18:35:40 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Cyclotomic Fields and Zeta Values
編輯J. Coates,R. Sujatha
視頻videohttp://file.papertrans.cn/243/242574/242574.mp4
概述Includes supplementary material:
叢書名稱Springer Monographs in Mathematics
圖書封面Titlebook: Cyclotomic Fields and Zeta Values;  J. Coates,R. Sujatha Book 2006 Springer-Verlag Berlin Heidelberg 2006 Arithmetic.Iwasawa theory.Lie.alg
描述.Cyclotomic fields have always occupied a central place in number theory, and the so called "main conjecture" on cyclotomic fields is arguably the deepest and most beautiful theorem known about them. It is also the simplest example of a vast array of subsequent, unproven "main conjectures‘‘ in modern arithmetic geometry involving the arithmetic behaviour of motives over p-adic Lie extensions of number fields. These main conjectures are concerned with what one might loosely call the exact formulae of number theory which conjecturally link the special values of zeta and L-functions to purely arithmetic expressions...Written by two leading workers in the field, this short and elegant book presents in full detail the simplest proof of the "main conjecture‘‘ for cyclotomic fields. Its motivation stems not only from the inherent beauty of the subject, but also from the wider arithmetic interest of these questions. The masterly exposition is intended to be accessible to both graduatestudents and non-experts in Iwasawa theory...
出版日期Book 2006
關(guān)鍵詞Arithmetic; Iwasawa theory; Lie; algebra; cyclotomic fields; function; geometry; main conjecture; number the
版次1
doihttps://doi.org/10.1007/978-3-540-33069-1
isbn_softcover978-3-642-06959-8
isbn_ebook978-3-540-33069-1Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer-Verlag Berlin Heidelberg 2006
The information of publication is updating

書目名稱Cyclotomic Fields and Zeta Values影響因子(影響力)




書目名稱Cyclotomic Fields and Zeta Values影響因子(影響力)學科排名




書目名稱Cyclotomic Fields and Zeta Values網(wǎng)絡(luò)公開度




書目名稱Cyclotomic Fields and Zeta Values網(wǎng)絡(luò)公開度學科排名




書目名稱Cyclotomic Fields and Zeta Values被引頻次




書目名稱Cyclotomic Fields and Zeta Values被引頻次學科排名




書目名稱Cyclotomic Fields and Zeta Values年度引用




書目名稱Cyclotomic Fields and Zeta Values年度引用學科排名




書目名稱Cyclotomic Fields and Zeta Values讀者反饋




書目名稱Cyclotomic Fields and Zeta Values讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:18:55 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:12:07 | 只看該作者
地板
發(fā)表于 2025-3-22 05:45:18 | 只看該作者
https://doi.org/10.1007/978-3-540-33069-1Arithmetic; Iwasawa theory; Lie; algebra; cyclotomic fields; function; geometry; main conjecture; number the
5#
發(fā)表于 2025-3-22 09:04:18 | 只看該作者
978-3-642-06959-8Springer-Verlag Berlin Heidelberg 2006
6#
發(fā)表于 2025-3-22 13:39:00 | 只看該作者
1439-7382 but also from the wider arithmetic interest of these questions. The masterly exposition is intended to be accessible to both graduatestudents and non-experts in Iwasawa theory...978-3-642-06959-8978-3-540-33069-1Series ISSN 1439-7382 Series E-ISSN 2196-9922
7#
發(fā)表于 2025-3-22 18:44:56 | 只看該作者
8#
發(fā)表于 2025-3-22 23:32:55 | 只看該作者
9#
發(fā)表于 2025-3-23 01:54:33 | 只看該作者
10#
發(fā)表于 2025-3-23 07:58:17 | 只看該作者
Antineoplastic and Antiangiogenic Actions of Somatostatin Analogstypes (sst1–sst5) and one splice variant have been cloned from human, mouse and rat (.; .). After expression of sst1–sst5 gene clones in mammalian cell lines we and others demonstrated a distinct profile for binding of clinically employed somatostatin analogs, such as SMS 201–995 (octreotide), BIM 23014 (lan-reotide) and RC-160 (vapreotide).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-28 14:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
河池市| 来凤县| 佳木斯市| 余干县| 瑞昌市| 云南省| 拉萨市| 连州市| 汕头市| 樟树市| 赣榆县| 台中市| 西城区| 大余县| 丘北县| 宜阳县| 高青县| 乃东县| 博乐市| 凤山市| 镇平县| 阿尔山市| 娱乐| 海丰县| 北流市| 固始县| 利川市| 潮安县| 固镇县| 长汀县| 宜良县| 新营市| 景东| 泰州市| 麻城市| 曲靖市| 清涧县| 手机| 兖州市| 同德县| 高青县|