找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Cyclotomic Fields and Zeta Values; J. Coates,R. Sujatha Book 2006 Springer-Verlag Berlin Heidelberg 2006 Arithmetic.Iwasawa theory.Lie.alg

[復(fù)制鏈接]
查看: 53642|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:35:40 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Cyclotomic Fields and Zeta Values
編輯J. Coates,R. Sujatha
視頻videohttp://file.papertrans.cn/243/242574/242574.mp4
概述Includes supplementary material:
叢書(shū)名稱Springer Monographs in Mathematics
圖書(shū)封面Titlebook: Cyclotomic Fields and Zeta Values;  J. Coates,R. Sujatha Book 2006 Springer-Verlag Berlin Heidelberg 2006 Arithmetic.Iwasawa theory.Lie.alg
描述.Cyclotomic fields have always occupied a central place in number theory, and the so called "main conjecture" on cyclotomic fields is arguably the deepest and most beautiful theorem known about them. It is also the simplest example of a vast array of subsequent, unproven "main conjectures‘‘ in modern arithmetic geometry involving the arithmetic behaviour of motives over p-adic Lie extensions of number fields. These main conjectures are concerned with what one might loosely call the exact formulae of number theory which conjecturally link the special values of zeta and L-functions to purely arithmetic expressions...Written by two leading workers in the field, this short and elegant book presents in full detail the simplest proof of the "main conjecture‘‘ for cyclotomic fields. Its motivation stems not only from the inherent beauty of the subject, but also from the wider arithmetic interest of these questions. The masterly exposition is intended to be accessible to both graduatestudents and non-experts in Iwasawa theory...
出版日期Book 2006
關(guān)鍵詞Arithmetic; Iwasawa theory; Lie; algebra; cyclotomic fields; function; geometry; main conjecture; number the
版次1
doihttps://doi.org/10.1007/978-3-540-33069-1
isbn_softcover978-3-642-06959-8
isbn_ebook978-3-540-33069-1Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer-Verlag Berlin Heidelberg 2006
The information of publication is updating

書(shū)目名稱Cyclotomic Fields and Zeta Values影響因子(影響力)




書(shū)目名稱Cyclotomic Fields and Zeta Values影響因子(影響力)學(xué)科排名




書(shū)目名稱Cyclotomic Fields and Zeta Values網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Cyclotomic Fields and Zeta Values網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Cyclotomic Fields and Zeta Values被引頻次




書(shū)目名稱Cyclotomic Fields and Zeta Values被引頻次學(xué)科排名




書(shū)目名稱Cyclotomic Fields and Zeta Values年度引用




書(shū)目名稱Cyclotomic Fields and Zeta Values年度引用學(xué)科排名




書(shū)目名稱Cyclotomic Fields and Zeta Values讀者反饋




書(shū)目名稱Cyclotomic Fields and Zeta Values讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:18:55 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:12:07 | 只看該作者
地板
發(fā)表于 2025-3-22 05:45:18 | 只看該作者
https://doi.org/10.1007/978-3-540-33069-1Arithmetic; Iwasawa theory; Lie; algebra; cyclotomic fields; function; geometry; main conjecture; number the
5#
發(fā)表于 2025-3-22 09:04:18 | 只看該作者
978-3-642-06959-8Springer-Verlag Berlin Heidelberg 2006
6#
發(fā)表于 2025-3-22 13:39:00 | 只看該作者
1439-7382 but also from the wider arithmetic interest of these questions. The masterly exposition is intended to be accessible to both graduatestudents and non-experts in Iwasawa theory...978-3-642-06959-8978-3-540-33069-1Series ISSN 1439-7382 Series E-ISSN 2196-9922
7#
發(fā)表于 2025-3-22 18:44:56 | 只看該作者
8#
發(fā)表于 2025-3-22 23:32:55 | 只看該作者
9#
發(fā)表于 2025-3-23 01:54:33 | 只看該作者
10#
發(fā)表于 2025-3-23 07:58:17 | 只看該作者
Antineoplastic and Antiangiogenic Actions of Somatostatin Analogstypes (sst1–sst5) and one splice variant have been cloned from human, mouse and rat (.; .). After expression of sst1–sst5 gene clones in mammalian cell lines we and others demonstrated a distinct profile for binding of clinically employed somatostatin analogs, such as SMS 201–995 (octreotide), BIM 23014 (lan-reotide) and RC-160 (vapreotide).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-28 20:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石林| 日土县| 双鸭山市| 婺源县| 芦溪县| 漠河县| 荃湾区| 沙坪坝区| 龙山县| 卢龙县| 贺兰县| 高密市| 周宁县| 新河县| 青神县| 五河县| 天峻县| 章丘市| 青川县| 即墨市| 应城市| 乌鲁木齐市| 乌兰察布市| 沙田区| 二连浩特市| 宁明县| 来宾市| 鲁山县| 柏乡县| 瑞昌市| 高要市| 河间市| 和田县| 大石桥市| 年辖:市辖区| 湄潭县| 昌黎县| 特克斯县| 滦平县| 关岭| 镇原县|