找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cyclotomic Fields I and II; Serge Lang Textbook 1990Latest edition Springer Science+Business Media New York 1990 Cohomology.Prime.algebra.

[復(fù)制鏈接]
樓主: cerebral
21#
發(fā)表于 2025-3-25 05:27:18 | 只看該作者
Lubin-Tate Theory,ith prime elements in a .-adic field, they construct maximal abelian totally ramified extensions by means of torsion points on formal groups, thus obtaining a merging of class field theory and Kummer theory by means of these groups.
22#
發(fā)表于 2025-3-25 09:02:13 | 只看該作者
Explicit Reciprocity Laws,otomic fields. These were extended by Coates—Wiles [CW 1] and Wiles [Wi] to arbitrary Lubin—Tate groups. Although Wiles follows Iwasawa to a large extent, it turns out his proofs are simpler because of the formalism of the Lubin—Tate formal groups. We essentially reproduce his paper in the present chapter.
23#
發(fā)表于 2025-3-25 13:29:15 | 只看該作者
24#
發(fā)表于 2025-3-25 16:56:30 | 只看該作者
-adic Preliminaries, Artin-Hasse power series, and the Dwork power series closely related to it. The latter allows us to obtain an analytic representation of .-th roots of unity, which reappear later in the context of gauss sums, occurring as eigenvalues of .-adic completely continuous operators. Cf. Dwork’s papers in the bibliography.
25#
發(fā)表于 2025-3-25 21:45:55 | 只看該作者
26#
發(fā)表于 2025-3-26 00:35:03 | 只看該作者
27#
發(fā)表于 2025-3-26 04:22:10 | 只看該作者
Acoustic Communication Under the Sea), of higher .-groups (Coates—Sinnott [Co 1], [Co 2], [C—S]) has led to purely algebraic theorems concerned with group rings and certain ideals, formed with Bernoulli numbers (somewhat generalized, as by Leopoldt). Such ideals happen to annihilate these groups, but in many cases it is still conjectu
28#
發(fā)表于 2025-3-26 11:05:08 | 只看該作者
29#
發(fā)表于 2025-3-26 15:22:36 | 只看該作者
30#
發(fā)表于 2025-3-26 20:31:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 10:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
郴州市| 辽阳县| 竹溪县| 浮山县| 昆山市| 凤城市| 涞源县| 阿拉善右旗| 五河县| 铜鼓县| 琼海市| 盖州市| 永胜县| 龙里县| 滁州市| 襄垣县| 久治县| 新乐市| 六盘水市| 建瓯市| 阿尔山市| 庄河市| 綦江县| 普洱| 高州市| 临泽县| 新密市| 福海县| 无为县| 华阴市| 白山市| 揭西县| 陕西省| 喀什市| 威海市| 衡阳市| 小金县| 萝北县| 茌平县| 万年县| 上虞市|