找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cyclotomic Fields I and II; Serge Lang Textbook 1990Latest edition Springer Science+Business Media New York 1990 Cohomology.Prime.algebra.

[復(fù)制鏈接]
樓主: cerebral
21#
發(fā)表于 2025-3-25 05:27:18 | 只看該作者
Lubin-Tate Theory,ith prime elements in a .-adic field, they construct maximal abelian totally ramified extensions by means of torsion points on formal groups, thus obtaining a merging of class field theory and Kummer theory by means of these groups.
22#
發(fā)表于 2025-3-25 09:02:13 | 只看該作者
Explicit Reciprocity Laws,otomic fields. These were extended by Coates—Wiles [CW 1] and Wiles [Wi] to arbitrary Lubin—Tate groups. Although Wiles follows Iwasawa to a large extent, it turns out his proofs are simpler because of the formalism of the Lubin—Tate formal groups. We essentially reproduce his paper in the present chapter.
23#
發(fā)表于 2025-3-25 13:29:15 | 只看該作者
24#
發(fā)表于 2025-3-25 16:56:30 | 只看該作者
-adic Preliminaries, Artin-Hasse power series, and the Dwork power series closely related to it. The latter allows us to obtain an analytic representation of .-th roots of unity, which reappear later in the context of gauss sums, occurring as eigenvalues of .-adic completely continuous operators. Cf. Dwork’s papers in the bibliography.
25#
發(fā)表于 2025-3-25 21:45:55 | 只看該作者
26#
發(fā)表于 2025-3-26 00:35:03 | 只看該作者
27#
發(fā)表于 2025-3-26 04:22:10 | 只看該作者
Acoustic Communication Under the Sea), of higher .-groups (Coates—Sinnott [Co 1], [Co 2], [C—S]) has led to purely algebraic theorems concerned with group rings and certain ideals, formed with Bernoulli numbers (somewhat generalized, as by Leopoldt). Such ideals happen to annihilate these groups, but in many cases it is still conjectu
28#
發(fā)表于 2025-3-26 11:05:08 | 只看該作者
29#
發(fā)表于 2025-3-26 15:22:36 | 只看該作者
30#
發(fā)表于 2025-3-26 20:31:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 10:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浏阳市| 石林| 济宁市| 泽库县| 个旧市| 合肥市| 抚顺县| 循化| 柳江县| 大冶市| 都兰县| 霍林郭勒市| 佛山市| 固阳县| 静安区| 依兰县| 通道| 色达县| 威宁| 武川县| 英山县| 垦利县| 西城区| 当阳市| 义乌市| 乌鲁木齐市| 财经| 天峨县| 阿尔山市| 眉山市| 乡宁县| 西昌市| 尖扎县| 永宁县| 山阳县| 通山县| 阳谷县| 潢川县| 甘洛县| 兴安县| 分宜县|