找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cyclotomic Fields I and II; Serge Lang Textbook 1990Latest edition Springer Science+Business Media New York 1990 Cohomology.Prime.algebra.

[復(fù)制鏈接]
查看: 24210|回復(fù): 67
樓主
發(fā)表于 2025-3-21 19:18:37 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Cyclotomic Fields I and II
編輯Serge Lang
視頻videohttp://file.papertrans.cn/243/242572/242572.mp4
叢書名稱Graduate Texts in Mathematics
圖書封面Titlebook: Cyclotomic Fields I and II;  Serge Lang Textbook 1990Latest edition Springer Science+Business Media New York 1990 Cohomology.Prime.algebra.
描述Kummer‘s work on cyclotomic fields paved the way for the development of algebraic number theory in general by Dedekind, Weber, Hensel, Hilbert, Takagi, Artin and others. However, the success of this general theory has tended to obscure special facts proved by Kummer about cyclotomic fields which lie deeper than the general theory. For a long period in the 20th century this aspect of Kummer‘s work seems to have been largely forgotten, except for a few papers, among which are those by Pollaczek [Po], Artin-Hasse [A-H] and Vandiver [Va]. In the mid 1950‘s, the theory of cyclotomic fields was taken up again by Iwasawa and Leopoldt. Iwasawa viewed cyclotomic fields as being analogues for number fields of the constant field extensions of algebraic geometry, and wrote a great sequence of papers investigating towers of cyclotomic fields, and more generally, Galois extensions of number fields whose Galois group is isomorphic to the additive group of p-adic integers. Leopoldt concentrated on a fixed cyclotomic field, and established various p-adic analogues of the classical complex analytic class number formulas. In particular, this led him to introduce, with Kubota, p-adic analogues of the
出版日期Textbook 1990Latest edition
關(guān)鍵詞Cohomology; Prime; algebra; finite field; homomorphism; number theory
版次2
doihttps://doi.org/10.1007/978-1-4612-0987-4
isbn_softcover978-1-4612-6972-4
isbn_ebook978-1-4612-0987-4Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightSpringer Science+Business Media New York 1990
The information of publication is updating

書目名稱Cyclotomic Fields I and II影響因子(影響力)




書目名稱Cyclotomic Fields I and II影響因子(影響力)學(xué)科排名




書目名稱Cyclotomic Fields I and II網(wǎng)絡(luò)公開度




書目名稱Cyclotomic Fields I and II網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Cyclotomic Fields I and II被引頻次




書目名稱Cyclotomic Fields I and II被引頻次學(xué)科排名




書目名稱Cyclotomic Fields I and II年度引用




書目名稱Cyclotomic Fields I and II年度引用學(xué)科排名




書目名稱Cyclotomic Fields I and II讀者反饋




書目名稱Cyclotomic Fields I and II讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:05:51 | 只看該作者
The ,-adic ,-function,rive further analytic properties, which allow us to make explicit its value at . = 1, thereby obtaining Leopoldt’s formula in the .-adic case, analogous to that of the complex case. We also give Leopoldt’s version of the .-adic class number formula and regulator.
板凳
發(fā)表于 2025-3-22 03:12:57 | 只看該作者
地板
發(fā)表于 2025-3-22 06:05:41 | 只看該作者
5#
發(fā)表于 2025-3-22 10:23:26 | 只看該作者
0072-5285 rt, Takagi, Artin and others. However, the success of this general theory has tended to obscure special facts proved by Kummer about cyclotomic fields which lie deeper than the general theory. For a long period in the 20th century this aspect of Kummer‘s work seems to have been largely forgotten, ex
6#
發(fā)表于 2025-3-22 15:02:51 | 只看該作者
7#
發(fā)表于 2025-3-22 21:04:50 | 只看該作者
8#
發(fā)表于 2025-3-22 22:18:05 | 只看該作者
9#
發(fā)表于 2025-3-23 05:03:44 | 只看該作者
The Elephant’s I: Looking for Abu’l Abbas can be used to construct explicitly such eigenspaces. The first section lays the foundations for the special type of ring under consideration. After that we study the Artin-Schreier equation and the Frobenius endomorphism.
10#
發(fā)表于 2025-3-23 07:29:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 10:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
隆昌县| 山阳县| 筠连县| 宝山区| 舟曲县| 南丰县| 芦溪县| 张掖市| 无锡市| 北宁市| 习水县| 泰安市| 苍山县| 靖江市| 嘉荫县| 兴安盟| 天峻县| 泸定县| 合山市| 普陀区| 泸定县| 土默特左旗| 岢岚县| 长宁区| 平谷区| 翼城县| 陆丰市| 科技| 文昌市| 呼伦贝尔市| 汝城县| 改则县| 临沧市| 和龙市| 富平县| 涿州市| 洛宁县| 海丰县| 平邑县| 获嘉县| 富阳市|