找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: CYNIC
41#
發(fā)表于 2025-3-28 17:37:59 | 只看該作者
42#
發(fā)表于 2025-3-28 22:36:35 | 只看該作者
0302-9743 e on Computer Vision, ECCV 2024, held in Milan, Italy, during September 29–October 4, 2024...The 2387 papers presented in these proceedings were carefully reviewed and selected from a total of 8585 submissions. They deal with topics such as Computer vision, Machine learning, Deep neural networks, Re
43#
發(fā)表于 2025-3-29 00:29:45 | 只看該作者
,Teddy: Efficient Large-Scale Dataset Distillation via?Taylor-Approximated Matching,taset to generalize effectively on real data. Tackling this challenge, as defined, relies on a bi-level optimization algorithm: a novel model is trained in each iteration within a nested loop, with gradients propagated through an unrolled computation graph. However, this approach incurs high memory
44#
發(fā)表于 2025-3-29 06:45:55 | 只看該作者
,Rethinking and?Improving Visual Prompt Selection for?In-Context Learning Segmentation,xel level. Recently, inspired by In-Context Learning (ICL), several generalist segmentation frameworks have been proposed, providing a promising paradigm for segmenting specific objects. However, existing works mostly ignore the value of visual prompts or simply apply similarity sorting to select co
45#
發(fā)表于 2025-3-29 07:54:55 | 只看該作者
46#
發(fā)表于 2025-3-29 13:40:51 | 只看該作者
TC4D: Trajectory-Conditioned Text-to-4D Generation,presentations, such as deformation models or time-dependent neural representations, are limited in the amount of motion they can generate—they cannot synthesize motion extending far beyond the bounding box used for volume rendering. The lack of a more flexible motion model contributes to the gap in
47#
發(fā)表于 2025-3-29 18:57:09 | 只看該作者
,Blind Image Deconvolution by?Generative-Based Kernel Prior and?Initializer via?Latent Encoding,motivated a series of DIP-based approaches, demonstrating remarkable success in BID. However, due to the high non-convexity of the inherent optimization process, these methods are notorious for their sensitivity to the initialized kernel. To alleviate this issue and further improve their performance
48#
發(fā)表于 2025-3-29 21:29:22 | 只看該作者
AdvDiff: Generating Unrestricted Adversarial Examples Using Diffusion Models,ms for deep learning applications because they can effectively bypass defense mechanisms. However, previous attack methods often directly inject Projected Gradient Descent (PGD) gradients into the sampling of generative models, which are not theoretically provable and thus generate unrealistic examp
49#
發(fā)表于 2025-3-30 03:06:19 | 只看該作者
50#
發(fā)表于 2025-3-30 07:18:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 13:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
静海县| 泗水县| 韶关市| 互助| 岳阳县| 台东市| 保亭| 图片| 朔州市| 高清| 黔西| 安庆市| 潼南县| 伊宁县| 大悟县| 四子王旗| 平和县| 阳朔县| 汕头市| 信宜市| 石棉县| 海晏县| 黔西县| 左贡县| 兴文县| 汤阴县| 象山县| 故城县| 曲阳县| 白朗县| 建德市| 乌拉特中旗| 石台县| 龙井市| 建阳市| 子洲县| 明水县| 文山县| 临猗县| 长沙县| 吴桥县|