找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: CYNIC
31#
發(fā)表于 2025-3-26 23:49:28 | 只看該作者
,Uncertainty Calibration with?Energy Based Instance-Wise Scaling in?the?Wild Dataset,truggle to accurately estimate uncertainty when processing inputs drawn from the wild dataset. To address this issue, we introduce a novel instance-wise calibration method based on an energy model. Our method incorporates energy scores instead of softmax confidence scores, allowing for adaptive cons
32#
發(fā)表于 2025-3-27 02:44:15 | 只看該作者
33#
發(fā)表于 2025-3-27 06:02:30 | 只看該作者
,UniMD: Towards Unifying Moment Retrieval and?Temporal Action Detection,ce the mutual benefits between TAD and MR. Extensive experiments demonstrate that the proposed task fusion learning scheme enables the two tasks to help each other and outperform the separately trained counterparts. Impressively, . achieves state-of-the-art results on three paired datasets Ego4D, Ch
34#
發(fā)表于 2025-3-27 11:15:52 | 只看該作者
,DyFADet: Dynamic Feature Aggregation for?Temporal Action Detection,th the proposed encoder layer and DyHead, a new dynamic TAD model, DyFADet, achieves promising performance on a series of challenging TAD benchmarks, including HACS-Segment, THUMOS14, ActivityNet-1.3, Epic-Kitchen?100, Ego4D-Moment QueriesV1.0, and FineAction. Code is released to ..
35#
發(fā)表于 2025-3-27 17:03:00 | 只看該作者
36#
發(fā)表于 2025-3-27 20:28:32 | 只看該作者
https://doi.org/10.1007/978-3-540-37652-1ures to reduce the ambiguity between foreground and background and strengthen the depth edges. Extensive experimental results on nuScenes and DDAD benchmarks show M.Depth achieves state-of-the-art performance. More results can be found in ..
37#
發(fā)表于 2025-3-27 23:12:34 | 只看該作者
Colin L Masters,Konrad Beyreuthermpowers existing frameworks to support hour-long videos and pushes their upper limit with an extra context token. It is demonstrated to surpass previous methods on most of video- or image-based benchmarks. Code and models are available at?..
38#
發(fā)表于 2025-3-28 05:07:50 | 只看該作者
M,Depth: Self-supervised Two-Frame ,ulti-camera ,etric Depth Estimation,ures to reduce the ambiguity between foreground and background and strengthen the depth edges. Extensive experimental results on nuScenes and DDAD benchmarks show M.Depth achieves state-of-the-art performance. More results can be found in ..
39#
發(fā)表于 2025-3-28 10:10:55 | 只看該作者
,LLaMA-VID: An Image is Worth 2 Tokens in?Large Language Models,mpowers existing frameworks to support hour-long videos and pushes their upper limit with an extra context token. It is demonstrated to surpass previous methods on most of video- or image-based benchmarks. Code and models are available at?..
40#
發(fā)表于 2025-3-28 13:04:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 09:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
隆化县| 永年县| 綦江县| 嘉定区| 上虞市| 天津市| 汤原县| 郸城县| 洛阳市| 瓮安县| 油尖旺区| 永平县| 安庆市| 濉溪县| 沙田区| 比如县| 玉溪市| 晋宁县| 宁阳县| 逊克县| 芦山县| 遂昌县| 阿图什市| 北海市| 桐城市| 泸水县| 霍州市| 雅江县| 延川县| 磐安县| 洞口县| 宽城| 农安县| 黄龙县| 桃园县| 包头市| 仙居县| 海城市| 宿松县| 阜新市| 连山|