找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: CYNIC
31#
發(fā)表于 2025-3-26 23:49:28 | 只看該作者
,Uncertainty Calibration with?Energy Based Instance-Wise Scaling in?the?Wild Dataset,truggle to accurately estimate uncertainty when processing inputs drawn from the wild dataset. To address this issue, we introduce a novel instance-wise calibration method based on an energy model. Our method incorporates energy scores instead of softmax confidence scores, allowing for adaptive cons
32#
發(fā)表于 2025-3-27 02:44:15 | 只看該作者
33#
發(fā)表于 2025-3-27 06:02:30 | 只看該作者
,UniMD: Towards Unifying Moment Retrieval and?Temporal Action Detection,ce the mutual benefits between TAD and MR. Extensive experiments demonstrate that the proposed task fusion learning scheme enables the two tasks to help each other and outperform the separately trained counterparts. Impressively, . achieves state-of-the-art results on three paired datasets Ego4D, Ch
34#
發(fā)表于 2025-3-27 11:15:52 | 只看該作者
,DyFADet: Dynamic Feature Aggregation for?Temporal Action Detection,th the proposed encoder layer and DyHead, a new dynamic TAD model, DyFADet, achieves promising performance on a series of challenging TAD benchmarks, including HACS-Segment, THUMOS14, ActivityNet-1.3, Epic-Kitchen?100, Ego4D-Moment QueriesV1.0, and FineAction. Code is released to ..
35#
發(fā)表于 2025-3-27 17:03:00 | 只看該作者
36#
發(fā)表于 2025-3-27 20:28:32 | 只看該作者
https://doi.org/10.1007/978-3-540-37652-1ures to reduce the ambiguity between foreground and background and strengthen the depth edges. Extensive experimental results on nuScenes and DDAD benchmarks show M.Depth achieves state-of-the-art performance. More results can be found in ..
37#
發(fā)表于 2025-3-27 23:12:34 | 只看該作者
Colin L Masters,Konrad Beyreuthermpowers existing frameworks to support hour-long videos and pushes their upper limit with an extra context token. It is demonstrated to surpass previous methods on most of video- or image-based benchmarks. Code and models are available at?..
38#
發(fā)表于 2025-3-28 05:07:50 | 只看該作者
M,Depth: Self-supervised Two-Frame ,ulti-camera ,etric Depth Estimation,ures to reduce the ambiguity between foreground and background and strengthen the depth edges. Extensive experimental results on nuScenes and DDAD benchmarks show M.Depth achieves state-of-the-art performance. More results can be found in ..
39#
發(fā)表于 2025-3-28 10:10:55 | 只看該作者
,LLaMA-VID: An Image is Worth 2 Tokens in?Large Language Models,mpowers existing frameworks to support hour-long videos and pushes their upper limit with an extra context token. It is demonstrated to surpass previous methods on most of video- or image-based benchmarks. Code and models are available at?..
40#
發(fā)表于 2025-3-28 13:04:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 07:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台州市| 综艺| 奉贤区| 长宁区| 和政县| 松原市| 乐安县| 中牟县| 仁怀市| 新安县| 探索| 荃湾区| 张北县| 东光县| 东城区| 博客| 定西市| 衡东县| 安平县| 来宾市| 大城县| 青阳县| 肥西县| 大同县| 商河县| 锦州市| 甘孜县| 枣强县| 张家港市| 固安县| 大石桥市| 平江县| 普洱| 晋江市| 阿合奇县| 钦州市| 墨脱县| 张家口市| 济南市| 山阳县| 海林市|