找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復(fù)制鏈接]
51#
發(fā)表于 2025-3-30 08:21:03 | 只看該作者
52#
發(fā)表于 2025-3-30 14:14:06 | 只看該作者
,Free Lunch for?Gait Recognition: A Novel Relation Descriptor,on the training set’s identity count. To address this, we propose Farthest gait-Anchor Selection to identify the most discriminative gait anchors and an Orthogonal Regularization Loss to increase diversity within gait anchors. Compared to individual-specific features extracted from the backbone, our
53#
發(fā)表于 2025-3-30 20:00:39 | 只看該作者
54#
發(fā)表于 2025-3-30 21:56:40 | 只看該作者
,Adaptive Correspondence Scoring for?Unsupervised Medical Image Registration,ustrate the versatility and effectiveness of our method, we tested our framework on three representative registration architectures across three medical image datasets along with other baselines. Our adaptive framework consistently outperforms other methods both quantitatively and qualitatively. Pai
55#
發(fā)表于 2025-3-31 02:32:22 | 只看該作者
,Watch Your Steps: Local Image and?Scene Editing by?Text Instructions,elevance map conveys the importance of changing each pixel to achieve an edit, and guides downstream modifications, ensuring that pixels irrelevant to the edit remain unchanged. With the relevance maps of multiview posed images, we can define the ., defining the 3D region within which modifications
56#
發(fā)表于 2025-3-31 06:53:01 | 只看該作者
,Forget More to?Learn More: Domain-Specific Feature Unlearning for?Semi-supervised and?Unsupervised aiming to learn domain-specific features. This involves minimizing classification loss for in-domain images and maximizing uncertainty loss for out-of-domain images. Subsequently, we transform the images into a new space, strategically unlearning (forgetting) the domain-specific representations whi
57#
發(fā)表于 2025-3-31 10:27:36 | 只看該作者
58#
發(fā)表于 2025-3-31 16:36:27 | 只看該作者
Human-in-the-Loop Visual Re-ID for Population Size Estimation,0% using CV alone to less than 20% by vetting a fraction (often less than 0.002%) of the total pairs. The cost of vetting reduces with the increase in accuracy and provides a practical approach for population size estimation within a desired tolerance when deploying Re-ID systems. (Code available at
59#
發(fā)表于 2025-3-31 18:59:52 | 只看該作者
60#
發(fā)表于 2025-4-1 01:12:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 03:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大冶市| 兰溪市| 长白| 昭觉县| 兰溪市| 鱼台县| 读书| 都昌县| 卢龙县| 汉阴县| 东明县| 玉田县| 师宗县| 东港市| 定安县| 沁源县| 上饶市| 旺苍县| 邯郸市| 北川| 德化县| 湘西| 厦门市| 芦山县| 玉门市| 宁武县| 灯塔市| 宜阳县| 丁青县| 军事| 玉田县| 萨嘎县| 和田市| 辽中县| 广昌县| 莱芜市| 宣恩县| 忻州市| 永仁县| 宜川县| 都匀市|