找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 10:43:11 | 只看該作者
12#
發(fā)表于 2025-3-23 14:02:20 | 只看該作者
Taking Sides: Hegel or Spinoza?tilizing a limited number of labeled samples in conjunction with an abundance of unlabeled data from the target domain. Simple aggregation of domain adaptation (DA) and semi-supervised learning (SSL) falls short of optimal performance due to two primary challenges: (1) skewed training data distribut
13#
發(fā)表于 2025-3-23 18:00:44 | 只看該作者
https://doi.org/10.1007/978-3-642-78709-6 3D counterpart has received less attention, in part due to the scarcity of annotated 3D datasets, which are expensive to collect. In this work, we propose to leverage a few annotated 3D shapes or richly annotated 2D datasets to perform 3D object part segmentation. We present our novel approach, ter
14#
發(fā)表于 2025-3-24 01:14:09 | 只看該作者
15#
發(fā)表于 2025-3-24 03:04:53 | 只看該作者
16#
發(fā)表于 2025-3-24 07:03:08 | 只看該作者
https://doi.org/10.1007/978-981-13-1053-9ities between examples and the target. The resulting models can be generalized seamlessly to novel segmentation tasks, significantly reducing the labeling and training costs compared with conventional pipelines. However, in-context segmentation is more challenging than classic ones requiring the mod
17#
發(fā)表于 2025-3-24 13:28:15 | 只看該作者
Juan Gorraiz,Benedikt Blahous,Martin Wieland Neural rendering methods based on point clouds do exist, but they do not perform well when the point cloud is sparse or incomplete, which is often the case with real-world data. We overcome these problems with a simple representation that aggregates point clouds at multiple scale levels with sparse
18#
發(fā)表于 2025-3-24 15:47:44 | 只看該作者
19#
發(fā)表于 2025-3-24 20:35:16 | 只看該作者
20#
發(fā)表于 2025-3-25 01:48:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 11:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昌江| 汝城县| 河南省| 石景山区| 五莲县| 嫩江县| 朔州市| 上林县| 扎赉特旗| 元谋县| 松潘县| 南江县| 平乡县| 丹凤县| 灵寿县| 青冈县| 深州市| 宁陕县| 固原市| 巧家县| 昭苏县| 凤山县| 竹溪县| 遂川县| 沈阳市| 洞头县| 盘锦市| 临高县| 潞城市| 上思县| 育儿| 龙海市| 都江堰市| 西丰县| 耿马| 黎城县| 辰溪县| 长垣县| 磐安县| 达孜县| 红安县|