找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: 桌前不可入
51#
發(fā)表于 2025-3-30 09:40:15 | 只看該作者
,3R-INN: How to?Be Climate Friendly While Consuming/Delivering Videos?,d daily, this contributes significantly to the greenhouse gas (GHG) emission. Therefore, reducing the end-to-end carbon footprint of the video chain, while preserving the quality of experience at the user side, is of high importance. To contribute in an impactful manner, we propose 3R-INN, a single
52#
發(fā)表于 2025-3-30 16:22:03 | 只看該作者
53#
發(fā)表于 2025-3-30 18:36:54 | 只看該作者
Towards Robust Full Low-Bit Quantization of Super Resolution Networks,ss of Super Resolution?(SR) networks to low-bit quantization considering mathematical model?of natural images. Natural images contain partially smooth areas?with edges between them. The number of pixels corresponding to edges?is significantly smaller than the overall number of pixels. As SR?task cou
54#
發(fā)表于 2025-3-30 21:23:59 | 只看該作者
55#
發(fā)表于 2025-3-31 04:30:57 | 只看該作者
56#
發(fā)表于 2025-3-31 09:00:10 | 只看該作者
,Style-Extracting Diffusion Models for?Semi-supervised Histopathology Segmentation,te these developments, generating images?with unseen characteristics beneficial for downstream tasks has received limited attention. To bridge this gap, we propose Style-Extracting Diffusion Models, featuring two conditioning mechanisms. Specifically, we utilize 1) a style conditioning mechanism?whi
57#
發(fā)表于 2025-3-31 10:51:15 | 只看該作者
58#
發(fā)表于 2025-3-31 17:23:55 | 只看該作者
,Model Breadcrumbs: Scaling Multi-task Model Merging with?Sparse Masks,s fine-tuning these pre-trained foundation models for specific target tasks, resulting in a rapid spread of models fine-tuned across a diverse array of tasks. This work focuses on the problem of merging multiple fine-tunings of the same foundation model derived from a spectrum of auxiliary tasks. We
59#
發(fā)表于 2025-3-31 20:36:53 | 只看該作者
60#
發(fā)表于 2025-3-31 23:27:41 | 只看該作者
iHuman: Instant Animatable Digital Humans From Monocular Videos,lass of users and wide-scale applications. In this paper, we present a fast, simple, yet effective method for creating animatable 3D digital humans from monocular videos. Our method utilizes the efficiency of Gaussian splatting to model both 3D geometry and appearance. However, we observed that naiv
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
庆阳市| 阿拉善右旗| 武强县| 苏州市| 鸡泽县| 斗六市| 龙泉市| 弥勒县| 嘉义市| 兴化市| 靖宇县| 炉霍县| 建水县| 水城县| 尼玛县| 景德镇市| 清流县| 微山县| 青冈县| 崇礼县| 丽水市| 遂溪县| 大石桥市| 墨江| 商南县| 来安县| 鸡泽县| 斗六市| 济源市| 黔南| 台山市| 龙里县| 晋中市| 仲巴县| 台湾省| 梅河口市| 茂名市| 安仁县| 柳江县| 四川省| 耒阳市|