找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: 桌前不可入
41#
發(fā)表于 2025-3-28 17:49:41 | 只看該作者
,Sequential Representation Learning via?Static-Dynamic Conditional Disentanglement,to the introduction of a novel theoretically grounded disentanglement constraint that can be directly and efficiently incorporated into our new framework. The experiments show that the proposed approach outperforms previous complex state-of-the-art techniques in scenarios where the dynamics of a scene are influenced by its content.
42#
發(fā)表于 2025-3-28 22:25:05 | 只看該作者
,Diverse Text-to-3D Synthesis with?Augmented Text Embedding,ose to use augmented text prompts via textual inversion of reference images to diversify the joint generation.?We show that our method leads to improved diversity in text-to-3D synthesis qualitatively and quantitatively. Project page:
43#
發(fā)表于 2025-3-29 01:24:06 | 只看該作者
44#
發(fā)表于 2025-3-29 05:22:04 | 只看該作者
,Affective Visual Dialog: A Large-Scale Benchmark for?Emotional Reasoning Based on?Visually Groundedponse to visually grounded conversations. The task involves three skills: (1) Dialog-based Question Answering (2) Dialog-based Emotion Prediction and (3) Affective explanation generation based on the dialog. Our key contribution is the collection of a large-scale dataset, dubbed AffectVisDial, consi
45#
發(fā)表于 2025-3-29 07:46:25 | 只看該作者
,Watching it in?Dark: A Target-Aware Representation Learning Framework for?High-Level Vision Tasks i issue through either image-level enhancement or feature-level adaptation, they often focus solely on the image itself, ignoring how the task-relevant target varies along with different illumination. In this paper, we propose a target-aware representation learning framework designed to improve high-
46#
發(fā)表于 2025-3-29 13:55:25 | 只看該作者
47#
發(fā)表于 2025-3-29 19:37:10 | 只看該作者
,OP-Align: Object-Level and?Part-Level Alignment for?Self-supervised Category-Level Articulated Objeignificance, this task remains challenging due to the varying shapes and poses of objects, expensive dataset annotation costs, and complex real-world environments. In this paper, we propose a novel self-supervised approach that leverages a single-frame point cloud to solve this task. Our model consi
48#
發(fā)表于 2025-3-29 21:40:12 | 只看該作者
,BAFFLE: A Baseline of?Backpropagation-Free Federated Learning,ising framework with practical applications, but its standard training paradigm requires the clients to backpropagate through the model to compute gradients. Since these clients are typically edge devices and not fully trusted, executing backpropagation on them incurs computational and storage overh
49#
發(fā)表于 2025-3-30 01:32:39 | 只看該作者
50#
發(fā)表于 2025-3-30 07:48:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巨野县| 阳谷县| 隆尧县| 金塔县| 澄城县| 济南市| 隆子县| 岳普湖县| 淮南市| 舞阳县| 肥西县| 如东县| 望都县| 泌阳县| 朝阳县| 贺兰县| 衡山县| 平定县| 万宁市| 孟津县| 大洼县| 泸水县| 松溪县| 晋宁县| 土默特左旗| 田东县| 吴江市| 连州市| 锦州市| 广河县| 辉南县| 嘉鱼县| 融水| 樟树市| 温宿县| 五台县| 兰考县| 驻马店市| 新和县| SHOW| 新邵县|