找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cure of Thermosetting Resins; Modelling and Experi J.-W. Vergnaud,J. Bouzon Book 1992 Springer-Verlag London Limited 1992 Heating and cure.

[復(fù)制鏈接]
樓主: Exaltation
21#
發(fā)表于 2025-3-25 06:09:53 | 只看該作者
22#
發(fā)表于 2025-3-25 08:41:22 | 只看該作者
23#
發(fā)表于 2025-3-25 12:24:07 | 只看該作者
Ethics and Reproductive Biologycous. Thus an uneven distribution of components may occur in some places of the mixture, which could be responsible for disturbances in the development of the process, not only when it is conducted on an industrial scale with the troublesome variation in mechanical properties of the final products,
24#
發(fā)表于 2025-3-25 17:19:35 | 只看該作者
25#
發(fā)表于 2025-3-25 22:22:24 | 只看該作者
https://doi.org/10.1007/978-1-4612-5823-0on it. In fact, the process is about the same as that already studied in the preceding chapter with the mould heated by air, with the main difference that the surrounding fluid is an oil. The numerical model is thus the same as the model described in the preceding chapter. It takes into account not
26#
發(fā)表于 2025-3-26 02:02:16 | 只看該作者
27#
發(fā)表于 2025-3-26 08:16:38 | 只看該作者
Numerical Analysis for a Parallelepiped with Three-Dimensional Heat Transfer and Cure Reaction,n and the thermal parameters are constant, for particular initial and boundary conditions. The problem is thus treated in a general way by considering heat transfer by conduction through the resin and heat evolved from the cure reaction. In this general case, the thermal parameters are temperature-dependent.
28#
發(fā)表于 2025-3-26 10:59:45 | 只看該作者
29#
發(fā)表于 2025-3-26 13:17:23 | 只看該作者
Robert B. Taylor,Katharine A. MunningVarious classical cases of one-dimensional heat conduction in a medium bounded by two parallel planes are described in this chapter. The two parallel planes are located either between . = 0 and . = . with a thickness ., or between . = ?. and . = . with a thickness of 2..
30#
發(fā)表于 2025-3-26 20:18:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 14:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
克什克腾旗| 平陆县| 珲春市| 丰原市| 夏津县| 调兵山市| 连平县| 平潭县| 广东省| 东方市| 同心县| 沙湾县| 武威市| 工布江达县| 义乌市| 介休市| 隆尧县| 清水河县| 阿鲁科尔沁旗| 宜丰县| 龙江县| 峨边| 夏邑县| 永春县| 高邑县| 山丹县| 建昌县| 浪卡子县| 高安市| 双桥区| 张家口市| 错那县| 虎林市| 获嘉县| 富蕴县| 赤城县| 海宁市| 济源市| 望江县| 正安县| 宁强县|