找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Covariances in Computer Vision and Machine Learning; Hà Quang Minh,Vittorio Murino Book 2018 Springer Nature Switzerland AG 2018

[復制鏈接]
樓主: 毛發(fā)
21#
發(fā)表于 2025-3-25 04:45:45 | 只看該作者
stances and divergences between them, we now discuss some of the most important problems encountered in practical applications, namely classification and regression on SPD matrices. In machine learning, a prominent paradigm for solving classification and regression problems is that of kernel methods
22#
發(fā)表于 2025-3-25 09:40:50 | 只看該作者
is chapter, by employing the feature map viewpoint of kernel methods in machine learning, we generalize covariance matrices to infinite-dimensional covariance operators in RKHS. Since they encode . between input features, they can be employed as a powerful form of data representation, which we explo
23#
發(fā)表于 2025-3-25 13:21:29 | 只看該作者
24#
發(fā)表于 2025-3-25 18:12:42 | 只看該作者
an distance, and Log-Hilbert-Schmidt distance and inner product between RKHS covariance operators. In this chapter, we show how the Hilbert-Schmidt and Log-Hilbert-Schmidt distances and inner products can be used to define positive definite kernels, allowing us to apply kernel methods on top of cova
25#
發(fā)表于 2025-3-25 22:42:48 | 只看該作者
26#
發(fā)表于 2025-3-26 03:02:37 | 只看該作者
978-3-031-00692-0Springer Nature Switzerland AG 2018
27#
發(fā)表于 2025-3-26 07:26:51 | 只看該作者
28#
發(fā)表于 2025-3-26 10:32:22 | 只看該作者
an distances and divergences intrinsic to SPD matrices, as described in Chapter 2, it is necessary to define new positive definite kernels based on these distances and divergences. In this chapter, we describe these kernels and the corresponding kernel methods.
29#
發(fā)表于 2025-3-26 14:02:12 | 只看該作者
model . in the input data, can substantially outperform finite-dimensional covariance matrices, which only model . in the input. This performance gain comes at higher computational costs and we showed how to substantially decrease these costs via approximation methods.
30#
發(fā)表于 2025-3-26 17:27:02 | 只看該作者
Kernel Methods on Covariance Matricesan distances and divergences intrinsic to SPD matrices, as described in Chapter 2, it is necessary to define new positive definite kernels based on these distances and divergences. In this chapter, we describe these kernels and the corresponding kernel methods.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-25 03:33
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
神农架林区| 图木舒克市| 洛宁县| 年辖:市辖区| 六安市| 且末县| 宝清县| 繁峙县| 新田县| 正定县| 军事| 九龙坡区| 东乡县| 文山县| 象州县| 望江县| 明溪县| 邮箱| 新巴尔虎右旗| 鄂伦春自治旗| 垣曲县| 鲁山县| 吉林市| 锦屏县| 凤庆县| 曲靖市| 沙田区| 安远县| 潍坊市| 昌吉市| 沙河市| 高淳县| 和田县| 贞丰县| 牡丹江市| 资阳市| 巴彦淖尔市| 泌阳县| 江华| 政和县| 平利县|