找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Covariances in Computer Vision and Machine Learning; Hà Quang Minh,Vittorio Murino Book 2018 Springer Nature Switzerland AG 2018

[復制鏈接]
樓主: 毛發(fā)
11#
發(fā)表于 2025-3-23 10:22:35 | 只看該作者
12#
發(fā)表于 2025-3-23 14:08:47 | 只看該作者
13#
發(fā)表于 2025-3-23 22:01:49 | 只看該作者
14#
發(fā)表于 2025-3-24 02:04:25 | 只看該作者
Introduction,eir applications in many disciplines in science and engineering. The practical applications of SPD matrices are numerous, including Diffusion Tensor Imaging (DTI) in brain imaging [5, 29, 66, 95], kernel learning [2, 60] in machine learning, radar signal processing [3, 9, 40], and Brain Computer Interface (BCI) applications [7, 8, 24, 100].
15#
發(fā)表于 2025-3-24 03:54:47 | 只看該作者
16#
發(fā)表于 2025-3-24 08:06:55 | 只看該作者
Data Representation by Covariance Operatorsis chapter, by employing the feature map viewpoint of kernel methods in machine learning, we generalize covariance matrices to infinite-dimensional covariance operators in RKHS. Since they encode . between input features, they can be employed as a powerful form of data representation, which we explore in subsequent chapters.
17#
發(fā)表于 2025-3-24 13:57:09 | 只看該作者
Geometry of Covariance Operatorsrators. These distances and divergences can then be directly employed in a practical application, e.g., image classification. We emphasize, however, that the concepts we present below are general and applicable in any application involving the comparison of covariance operators.
18#
發(fā)表于 2025-3-24 18:20:01 | 只看該作者
19#
發(fā)表于 2025-3-24 22:26:56 | 只看該作者
We then present a statistical interpretation of this framework, which shows that assuming that an image can be represented by a covariance matrix is essentially equivalent to assuming that its features are random variables generated by a multivariate Gaussian probability distribution with mean zero
20#
發(fā)表于 2025-3-25 01:49:59 | 只看該作者
d images by covariance matrices, this means that we need to have a similarity measure between covariance matrices. Since covariance matrices, properly regularized if necessary, are symmetric, positive definite (SPD matrices), a natural approach to measuring their similarity is via a distance (or dis
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 06:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
孝义市| 茌平县| 龙陵县| 巴里| 柏乡县| 视频| 且末县| 册亨县| 泸水县| 六盘水市| 永善县| 钟山县| 双牌县| 东乌珠穆沁旗| 扎兰屯市| 新宁县| 新巴尔虎右旗| 铜梁县| 民权县| 苏尼特右旗| 樟树市| 鲁山县| 富蕴县| 永康市| 西畴县| 南安市| 治县。| 静乐县| 休宁县| 鄂尔多斯市| 龙游县| 青川县| 行唐县| 铅山县| 景泰县| 偃师市| 育儿| 大港区| 红安县| 沙田区| 西安市|