找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Covariances in Computer Vision and Machine Learning; Hà Quang Minh,Vittorio Murino Book 2018 Springer Nature Switzerland AG 2018

[復(fù)制鏈接]
樓主: 毛發(fā)
11#
發(fā)表于 2025-3-23 10:22:35 | 只看該作者
12#
發(fā)表于 2025-3-23 14:08:47 | 只看該作者
13#
發(fā)表于 2025-3-23 22:01:49 | 只看該作者
14#
發(fā)表于 2025-3-24 02:04:25 | 只看該作者
Introduction,eir applications in many disciplines in science and engineering. The practical applications of SPD matrices are numerous, including Diffusion Tensor Imaging (DTI) in brain imaging [5, 29, 66, 95], kernel learning [2, 60] in machine learning, radar signal processing [3, 9, 40], and Brain Computer Interface (BCI) applications [7, 8, 24, 100].
15#
發(fā)表于 2025-3-24 03:54:47 | 只看該作者
16#
發(fā)表于 2025-3-24 08:06:55 | 只看該作者
Data Representation by Covariance Operatorsis chapter, by employing the feature map viewpoint of kernel methods in machine learning, we generalize covariance matrices to infinite-dimensional covariance operators in RKHS. Since they encode . between input features, they can be employed as a powerful form of data representation, which we explore in subsequent chapters.
17#
發(fā)表于 2025-3-24 13:57:09 | 只看該作者
Geometry of Covariance Operatorsrators. These distances and divergences can then be directly employed in a practical application, e.g., image classification. We emphasize, however, that the concepts we present below are general and applicable in any application involving the comparison of covariance operators.
18#
發(fā)表于 2025-3-24 18:20:01 | 只看該作者
19#
發(fā)表于 2025-3-24 22:26:56 | 只看該作者
We then present a statistical interpretation of this framework, which shows that assuming that an image can be represented by a covariance matrix is essentially equivalent to assuming that its features are random variables generated by a multivariate Gaussian probability distribution with mean zero
20#
發(fā)表于 2025-3-25 01:49:59 | 只看該作者
d images by covariance matrices, this means that we need to have a similarity measure between covariance matrices. Since covariance matrices, properly regularized if necessary, are symmetric, positive definite (SPD matrices), a natural approach to measuring their similarity is via a distance (or dis
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 01:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武穴市| 哈巴河县| 三明市| 二连浩特市| 绿春县| 延吉市| 岗巴县| 西充县| 监利县| 苏尼特右旗| 北辰区| 抚顺市| 甘南县| 子洲县| 德格县| 竹北市| 吐鲁番市| 肇庆市| 南投市| 合水县| 崇文区| 德阳市| 湘乡市| 吉林省| 邢台市| 萨嘎县| 介休市| 镇远县| 龙海市| 晋州市| 内乡县| 茌平县| 西和县| 邳州市| 通渭县| 收藏| 东兰县| 临安市| 库车县| 南雄市| 竹北市|