找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Counting Surfaces; CRM Aisenstadt Chair Bertrand Eynard Book 2016 Springer International Publishing Switzerland 2016 Algebraic geometry.Com

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 11:38:54 | 只看該作者
Springer International Publishing Switzerland 2016
12#
發(fā)表于 2025-3-23 17:49:44 | 只看該作者
Werner Rittberger,Bernward JenschkeIn this chapter we introduce definitions of maps, which are discrete surfaces obtained by gluing polygons along their sides, and we define generating functions to count them. We also derive Tutte’s equations, which are recursive equations satisfied by the generating functions.
13#
發(fā)表于 2025-3-23 19:12:56 | 只看該作者
In this chapter we introduce the notion of a formal matrix integral, which is very useful for combinatorics, as it turns out to be identical to the generating function of maps of Chap.?.
14#
發(fā)表于 2025-3-24 00:36:43 | 只看該作者
15#
發(fā)表于 2025-3-24 05:48:27 | 只看該作者
16#
發(fā)表于 2025-3-24 10:17:50 | 只看該作者
https://doi.org/10.1007/978-3-476-03355-0We have seen, in almost all previous chapters, that symplectic invariants and topological recursion play an important role. They give the solution to Tutte’s recursion equation for maps, they give the formal expansion of various matrix integrals, including Kontsevich integral, and they also give the asymptotics of large maps.
17#
發(fā)表于 2025-3-24 10:54:20 | 只看該作者
18#
發(fā)表于 2025-3-24 18:27:56 | 只看該作者
Formal Matrix Integrals,In this chapter we introduce the notion of a formal matrix integral, which is very useful for combinatorics, as it turns out to be identical to the generating function of maps of Chap.?.
19#
發(fā)表于 2025-3-24 20:22:40 | 只看該作者
20#
發(fā)表于 2025-3-25 03:09:47 | 只看該作者
Counting Riemann Surfaces,In the previous chapter, we have computed the asymptotic generating functions of large maps, and we have seen that they are related to the (?.,?.) minimal model.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 11:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
中山市| 米林县| 丰顺县| 东乌珠穆沁旗| 同心县| 五寨县| 桓台县| 额济纳旗| 平邑县| 潼南县| 曲松县| 永清县| 定兴县| 津南区| 临潭县| 南昌县| 仙游县| 蒙城县| 霍州市| 马公市| 大理市| 琼海市| 郓城县| 合江县| 太康县| 鄂尔多斯市| 江口县| 永修县| 汾阳市| 南澳县| 白山市| 唐海县| 革吉县| 治县。| 公主岭市| 涿州市| 万安县| 策勒县| 谷城县| 韶关市| 罗江县|