找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Counting Surfaces; CRM Aisenstadt Chair Bertrand Eynard Book 2016 Springer International Publishing Switzerland 2016 Algebraic geometry.Com

[復(fù)制鏈接]
查看: 7014|回復(fù): 42
樓主
發(fā)表于 2025-3-21 18:29:07 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Counting Surfaces
副標(biāo)題CRM Aisenstadt Chair
編輯Bertrand Eynard
視頻videohttp://file.papertrans.cn/240/239123/239123.mp4
概述First book on explaining the random matrix method to enumerate maps and Riemann surfaces The method has been discovered recently (between 2004 and 2007), and is presently explained only in very few sp
叢書名稱Progress in Mathematical Physics
圖書封面Titlebook: Counting Surfaces; CRM Aisenstadt Chair Bertrand Eynard Book 2016 Springer International Publishing Switzerland 2016 Algebraic geometry.Com
描述.The problem of enumerating maps (a map is a set of polygonal "countries" on a world of a certain topology, not necessarily the plane or the sphere) is an important problem in mathematics and physics, and it has many applications ranging from statistical physics, geometry, particle physics, telecommunications, biology, ... etc. This problem has been studied by many communities of researchers, mostly combinatorists, probabilists, and physicists. Since 1978, physicists have invented a method called "matrix models" to address that problem, and many results have been obtained..Besides, another important problem in mathematics and physics (in particular string theory), is to count Riemann surfaces. Riemann surfaces of a given topology are parametrized by a finite number of real parameters (called moduli), and the moduli space is a finite dimensional compact manifold or orbifold of complicated topology. The number of Riemann surfaces is the volume of that moduli space. Mor.e generally, an important problem in algebraic geometry is to characterize the moduli spaces, by computing not only their volumes, but also other characteristic numbers called intersection numbers..Witten‘s conjecture
出版日期Book 2016
關(guān)鍵詞Algebraic geometry; Combinatorics; Field theory; Integrability; Matrix model; Moduli Spaces; Riemann surfa
版次1
doihttps://doi.org/10.1007/978-3-7643-8797-6
isbn_ebook978-3-7643-8797-6Series ISSN 1544-9998 Series E-ISSN 2197-1846
issn_series 1544-9998
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

書目名稱Counting Surfaces影響因子(影響力)




書目名稱Counting Surfaces影響因子(影響力)學(xué)科排名




書目名稱Counting Surfaces網(wǎng)絡(luò)公開度




書目名稱Counting Surfaces網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Counting Surfaces被引頻次




書目名稱Counting Surfaces被引頻次學(xué)科排名




書目名稱Counting Surfaces年度引用




書目名稱Counting Surfaces年度引用學(xué)科排名




書目名稱Counting Surfaces讀者反饋




書目名稱Counting Surfaces讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:42:46 | 只看該作者
Counting Large Maps,proximation for counting continuous surfaces. The physical motivation is the following: in string theory, particles are 1-dimensional loops called strings, and under time evolution their trajectories in space-time are surfaces. Quantum mechanics amounts to averaging over all possible trajectories be
板凳
發(fā)表于 2025-3-22 00:36:18 | 只看該作者
地板
發(fā)表于 2025-3-22 06:43:25 | 只看該作者
5#
發(fā)表于 2025-3-22 11:23:50 | 只看該作者
6#
發(fā)表于 2025-3-22 16:45:08 | 只看該作者
7#
發(fā)表于 2025-3-22 17:35:25 | 只看該作者
8#
發(fā)表于 2025-3-22 23:43:47 | 只看該作者
1544-9998 04 and 2007), and is presently explained only in very few sp.The problem of enumerating maps (a map is a set of polygonal "countries" on a world of a certain topology, not necessarily the plane or the sphere) is an important problem in mathematics and physics, and it has many applications ranging fr
9#
發(fā)表于 2025-3-23 04:17:01 | 只看該作者
d then arbitrary genus and arbitrary number of boundaries. The disk case (planar rooted maps) was already done by Tutte [83–85]. Generating functions for higher topologies have been computed more recently [5, 31].
10#
發(fā)表于 2025-3-23 07:45:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 15:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
靖宇县| 泸溪县| 象山县| 华阴市| 永新县| 泸州市| 浏阳市| 鄂尔多斯市| 都江堰市| 原阳县| 长沙市| 兰西县| 和平区| 麻城市| 临夏市| 沙坪坝区| 定襄县| 甘肃省| 襄城县| 柳州市| 上虞市| 定边县| 肥东县| 东兰县| 临沂市| 兴安县| 广河县| 申扎县| 恭城| 迁西县| 北票市| 鹤壁市| 高台县| 青海省| 石楼县| 茌平县| 河曲县| 开原市| 昭觉县| 千阳县| 大埔县|