找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Counterexamples in Operator Theory; Mohammed Hichem Mortad Textbook 2022 The Editor(s) (if applicable) and The Author(s), under exclusive

[復(fù)制鏈接]
樓主: 猛烈抨擊
21#
發(fā)表于 2025-3-25 05:30:59 | 只看該作者
,Glaubwürdigkeit: ein Forschungsüberblick,One of the most powerful tools in the theory of normal operators is the following Fuglede theorem.
22#
發(fā)表于 2025-3-25 09:20:08 | 只看該作者
23#
發(fā)表于 2025-3-25 15:20:45 | 只看該作者
Norbert Konegen,Klaus SondergeldClearly, . and . have the same eigenvalues which, in this setting, means that . and . have equal spectra. To see why . and . are not unitarily equivalent, remember that two unitarily equivalent operators are simultaneously (e.g.) self-adjoint. Since . is self-adjoint and . is not, it follows that they cannot be unitarily equivalent.
24#
發(fā)表于 2025-3-25 17:36:33 | 只看該作者
Norbert Konegen,Klaus SondergeldConsider the operator equation: . where ., ., .?∈?.(.) are given and .?∈?.(.) is the unknown. This equation is more commonly known as the Sylvester equation.
25#
發(fā)表于 2025-3-25 20:44:12 | 只看該作者
Norbert Konegen,Klaus SondergeldShow that the mapping .?.. defined from .(.) into .(.) is not weakly continuous, that is, find a sequence (..) in .(.) that converges weakly to .?∈?.(.) yet . does not converge weakly to ...
26#
發(fā)表于 2025-3-26 01:23:36 | 只看該作者
Some Basic PropertiesThroughout this chapter, . and . denote two Hilbert spaces over . unless otherwise stated.
27#
發(fā)表于 2025-3-26 08:16:15 | 只看該作者
Basic Classes of Bounded Linear OperatorsLet . be a Hilbert space, and let .?∈?.(.). Let . be the identity operator on ..
28#
發(fā)表于 2025-3-26 11:28:53 | 只看該作者
Operator TopologiesLet . be a Hilbert space, and let (..) be a sequence in .(.).
29#
發(fā)表于 2025-3-26 13:53:21 | 只看該作者
30#
發(fā)表于 2025-3-26 19:10:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嫩江县| 股票| 齐齐哈尔市| 连城县| 普兰店市| 延长县| 彰武县| 天长市| 磐安县| 海原县| 丹棱县| 桂平市| 丰城市| 和田县| 德惠市| 获嘉县| 太和县| 米易县| 攀枝花市| 南汇区| 马龙县| 佛学| 建湖县| 茂名市| 葵青区| 滁州市| 宜春市| 安龙县| 平谷区| 常宁市| 岚皋县| 卢龙县| 奈曼旗| 鄂尔多斯市| 永泰县| 休宁县| 上高县| 宣城市| 通许县| 莱州市| 夏津县|