找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Core Concepts in Data Analysis: Summarization, Correlation and Visualization; Boris Mirkin Textbook 20111st edition Springer-Verlag London

[復(fù)制鏈接]
樓主: 臉紅
21#
發(fā)表于 2025-3-25 06:12:26 | 只看該作者
22#
發(fā)表于 2025-3-25 07:59:49 | 只看該作者
Hierarchical Clustering,lits conceptually, that is, using one feature at a time. The last section is devoted to the Single Link clustering, a popular method for extraction of elongated structures from the data. Relations between single link clustering and two popular graph-theoretic structures, the Minimum Spanning Tree (MST) and connected components, are explained.
23#
發(fā)表于 2025-3-25 13:34:52 | 只看該作者
Annalisa Bonfiglio,Danilo De Rossiata analysis problems is presented. The datasets are taken from various fields such as monitoring market towns, computer security protocols, bioinformatics, cognitive psychology. (iii)An overview of data visualization, its goals and some techniques is given.
24#
發(fā)表于 2025-3-25 17:48:33 | 只看該作者
25#
發(fā)表于 2025-3-25 20:20:49 | 只看該作者
26#
發(fā)表于 2025-3-26 01:07:07 | 只看該作者
Introduction: What Is Core,ata analysis problems is presented. The datasets are taken from various fields such as monitoring market towns, computer security protocols, bioinformatics, cognitive psychology. (iii)An overview of data visualization, its goals and some techniques is given.
27#
發(fā)表于 2025-3-26 07:12:52 | 只看該作者
2D Analysis: Correlation and Visualization of Two Features,dence, and Pearson’s chi-squared for two nominal variables; the latter is treated as a summary correlation measure, in contrast to the conventional view of it as a criterion of statistical independence. They all are applicable in the case of multidimensional data as well.
28#
發(fā)表于 2025-3-26 09:36:37 | 只看該作者
29#
發(fā)表于 2025-3-26 16:03:25 | 只看該作者
1863-7310 d to date..Explores methodical innovations of summarization .Core Concepts in Data Analysis: Summarization, Correlation and Visualization. .provides in-depth descriptions of those data analysis approaches that either summarize data (principal component analysis and clustering, including hierarchical
30#
發(fā)表于 2025-3-26 19:38:09 | 只看該作者
https://doi.org/10.1007/978-0-85729-287-2Clustering; Data Analysis; K-means; Principal component analysis; Visualization
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 10:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洞头县| 长沙县| 漯河市| 霍林郭勒市| 长葛市| 通榆县| 天镇县| 蒙阴县| 会泽县| 图木舒克市| 乐平市| 玉屏| 余庆县| 孝昌县| 财经| 万山特区| 宜兴市| 红原县| 山西省| 石棉县| 东海县| 宕昌县| 郸城县| 河曲县| 咸宁市| 安阳市| 高陵县| 彭水| 信丰县| 彭泽县| 新和县| 绥化市| 祥云县| 新巴尔虎左旗| 朔州市| 无为县| 南充市| 山阳县| 广平县| 依安县| 仙居县|