找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Core Concepts in Data Analysis: Summarization, Correlation and Visualization; Boris Mirkin Textbook 20111st edition Springer-Verlag London

[復(fù)制鏈接]
查看: 29606|回復(fù): 42
樓主
發(fā)表于 2025-3-21 19:57:57 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Core Concepts in Data Analysis: Summarization, Correlation and Visualization
編輯Boris Mirkin
視頻videohttp://file.papertrans.cn/239/238229/238229.mp4
概述Provides an in-depth understanding of a few basic techniques in data analysis rather than covering the broad spectrum of approaches developed to date..Explores methodical innovations of summarization
叢書(shū)名稱(chēng)Undergraduate Topics in Computer Science
圖書(shū)封面Titlebook: Core Concepts in Data Analysis: Summarization, Correlation and Visualization;  Boris Mirkin Textbook 20111st edition Springer-Verlag London
描述.Core Concepts in Data Analysis: Summarization, Correlation and Visualization. .provides in-depth descriptions of those data analysis approaches that either summarize data (principal component analysis and clustering, including hierarchical and network clustering) or correlate different aspects of data (decision trees, linear rules, neuron networks, and Bayes rule)..Boris Mirkin takes an unconventional approach and introduces the concept of multivariate data summarization as a counterpart to conventional machine learning prediction schemes, utilizing techniques from statistics, data analysis, data mining, machine learning, computational intelligence, and information retrieval..Innovations following from his in-depth analysis of the models underlying summarization techniques are introduced, and applied to challenging issues such as the number of clusters, mixed scale data standardization, interpretation of the solutions, as well as relations between seemingly unrelated concepts: goodness-of-fit functions for classification trees and data standardization, spectral clustering and additive clustering, correlation and visualization of contingency data. ?.?The mathematical detail is enca
出版日期Textbook 20111st edition
關(guān)鍵詞Clustering; Data Analysis; K-means; Principal component analysis; Visualization
版次1
doihttps://doi.org/10.1007/978-0-85729-287-2
isbn_ebook978-0-85729-287-2Series ISSN 1863-7310 Series E-ISSN 2197-1781
issn_series 1863-7310
copyrightSpringer-Verlag London Ltd., part of Springer Nature 2011
The information of publication is updating

書(shū)目名稱(chēng)Core Concepts in Data Analysis: Summarization, Correlation and Visualization影響因子(影響力)




書(shū)目名稱(chēng)Core Concepts in Data Analysis: Summarization, Correlation and Visualization影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Core Concepts in Data Analysis: Summarization, Correlation and Visualization網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Core Concepts in Data Analysis: Summarization, Correlation and Visualization網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Core Concepts in Data Analysis: Summarization, Correlation and Visualization被引頻次




書(shū)目名稱(chēng)Core Concepts in Data Analysis: Summarization, Correlation and Visualization被引頻次學(xué)科排名




書(shū)目名稱(chēng)Core Concepts in Data Analysis: Summarization, Correlation and Visualization年度引用




書(shū)目名稱(chēng)Core Concepts in Data Analysis: Summarization, Correlation and Visualization年度引用學(xué)科排名




書(shū)目名稱(chēng)Core Concepts in Data Analysis: Summarization, Correlation and Visualization讀者反饋




書(shū)目名稱(chēng)Core Concepts in Data Analysis: Summarization, Correlation and Visualization讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:53:29 | 只看該作者
1D Analysis: Summarization and Visualization of a Single Feature,ssible: just one feature. This also provides us with a stock of useful concepts for further material. The concepts of histogram, central point and spread are presented. Two perspectives on the summaries are outlined: one is the classical probabilistic and the other of approximation, naturally extend
板凳
發(fā)表于 2025-3-22 02:56:27 | 只看該作者
地板
發(fā)表于 2025-3-22 06:27:40 | 只看該作者
5#
發(fā)表于 2025-3-22 11:33:28 | 只看該作者
6#
發(fā)表于 2025-3-22 15:17:32 | 只看該作者
7#
發(fā)表于 2025-3-22 19:37:05 | 只看該作者
Hierarchical Clustering, different algorithms for divisive clustering, all three based on the same square error criterion as K-Means partitioning method. Agglomerative clustering starts from a trivial set of singletons and merges two clusters at a time. Divisive clustering splits clusters in parts and should be a more inte
8#
發(fā)表于 2025-3-22 23:33:57 | 只看該作者
Approximate and Spectral Clustering for Network and Affinity Data, chapter describes methods for finding a cluster or two-cluster split combining three types of approaches from both old and recent developments: (a)combinatorial approach that is oriented at clustering as optimization of some reasonable measure of cluster homogeneity, (b)additive clustering approach
9#
發(fā)表于 2025-3-23 01:45:26 | 只看該作者
Web Mining and Recommendation SystemsKohonen self-organizing maps (SOM) that tie up the sought clusters to a visually convenient two-dimensional grid. Equivalent reformulations of K-Means criterion are described – they can yield different algorithms for K-Means. One of these is explained at length: K-Means extends Principal component a
10#
發(fā)表于 2025-3-23 08:19:59 | 只看該作者
K-Means and Related Clustering Methods,Kohonen self-organizing maps (SOM) that tie up the sought clusters to a visually convenient two-dimensional grid. Equivalent reformulations of K-Means criterion are described – they can yield different algorithms for K-Means. One of these is explained at length: K-Means extends Principal component a
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 08:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凤翔县| 盐边县| 镇赉县| 平谷区| 泾源县| 无锡市| 类乌齐县| 昌都县| 上思县| 成武县| 正宁县| 咸宁市| 达日县| 古田县| 太保市| 武汉市| 中宁县| 扶余县| 澄江县| 页游| 襄樊市| 靖边县| 富阳市| 昭觉县| 民勤县| 松溪县| 揭东县| 米脂县| 桐梓县| 水富县| 社会| 马公市| 甘南县| 泰来县| 新巴尔虎右旗| 博兴县| 西华县| 濮阳县| 新野县| 祁门县| 顺昌县|