找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex Cones; Geometry and Probabi Rolf Schneider Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to Spr

[復(fù)制鏈接]
樓主: 無力向前
21#
發(fā)表于 2025-3-25 05:03:54 | 只看該作者
22#
發(fā)表于 2025-3-25 10:03:40 | 只看該作者
23#
發(fā)表于 2025-3-25 14:18:22 | 只看該作者
Steiner and kinematic formulas,xpresses the (Euclidean, Gaussian, or spherical) volume of a parallel set of a suitable given set at a given distance ε as a function of ε, exhibiting a special form from which functionals depending only on the given set can be extracted.
24#
發(fā)表于 2025-3-25 18:07:31 | 只看該作者
Miscellanea on random cones,t may be possible to obtain explicit results for some expected geometric functionals of the random cone. The brief Section 6.1 deals with uniform random orthogonal projections of polyhedral cones (or general convex polyhedra). Section 6.2 treats images of general convex cones under linear maps defined by Gaussian matrices.
25#
發(fā)表于 2025-3-25 23:50:37 | 只看該作者
Winfried Beyer,Holger Sassenbachtroductory material about closed convex cones. Here we provide also some special lemmas, which will later be applied. Section 1.4 is devoted to polyhedra and deals with their normal cones and angle cones. In Section 1.5 we consider recession cones and show how they can be used in the description of
26#
發(fā)表于 2025-3-26 03:28:41 | 只看該作者
VersStG Ausnahmen von der Besteuerung,xpresses the (Euclidean, Gaussian, or spherical) volume of a parallel set of a suitable given set at a given distance ε as a function of ε, exhibiting a special form from which functionals depending only on the given set can be extracted.
27#
發(fā)表于 2025-3-26 06:06:11 | 只看該作者
28#
發(fā)表于 2025-3-26 10:27:52 | 只看該作者
29#
發(fā)表于 2025-3-26 14:09:50 | 只看該作者
30#
發(fā)表于 2025-3-26 20:28:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 22:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
连山| 呼玛县| 尼玛县| 长顺县| 会东县| 靖西县| 泰来县| 东乌珠穆沁旗| 扎鲁特旗| 峡江县| 罗源县| 阿拉善左旗| 东莞市| 漳平市| 抚宁县| 瓮安县| 绩溪县| 博客| 平顶山市| 嘉禾县| 宁武县| 博罗县| 阳新县| 碌曲县| 泉州市| 西昌市| 鄂伦春自治旗| 榆林市| 诏安县| 安泽县| 通许县| 道真| 张家港市| 岫岩| 交口县| 柳州市| 昌吉市| 神池县| 尚志市| 延津县| 奉节县|