找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex Cones; Geometry and Probabi Rolf Schneider Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to Spr

[復(fù)制鏈接]
樓主: 無力向前
11#
發(fā)表于 2025-3-23 11:37:25 | 只看該作者
https://doi.org/10.33283/978-3-86298-640-8Whereas the considerations of the first chapter were essentially combinatorial in character, we begin now with measuring convex polytopes and polyhedral cones. In Section 2.1 we deal briefly with invariant measures, as needed later.
12#
發(fā)表于 2025-3-23 17:38:15 | 只看該作者
13#
發(fā)表于 2025-3-23 21:20:54 | 只看該作者
14#
發(fā)表于 2025-3-23 23:25:12 | 只看該作者
15#
發(fā)表于 2025-3-24 03:32:45 | 只看該作者
Angle functions,Whereas the considerations of the first chapter were essentially combinatorial in character, we begin now with measuring convex polytopes and polyhedral cones. In Section 2.1 we deal briefly with invariant measures, as needed later.
16#
發(fā)表于 2025-3-24 07:48:13 | 只看該作者
Relations to spherical geometry,Whereas the considerations of the first chapter were essentially combinatorial in character, we begin now with measuring convex polytopes and polyhedral cones. In Section 2.1 we deal briefly with invariant measures, as needed later.
17#
發(fā)表于 2025-3-24 14:01:51 | 只看該作者
Central hyperplane arrangements and induced cones,The subsequent sections of this chapter deal with random cones generated by random central hyperplane arrangements. This topic was initiated a long time ago by Cover and Efron [50]. Their work is expanded considerably in Sections 5.3–5.5.
18#
發(fā)表于 2025-3-24 15:28:21 | 只看該作者
Convex hypersurfaces adapted to cones,In this chapter, the viewpoint is distinctly different. We still start with a pointed closed convex cone . with interior points. But our main interest will be in convex hypersurfaces, namely boundaries of closed convex sets, in this cone, whose behavior at infinity is determined by the cone.
19#
發(fā)表于 2025-3-24 19:58:16 | 只看該作者
Appendix: Open questions,We have occasionally mentioned open questions, and in this Appendix we want to repeat them and present them as a brief collection, for the reader’s convenience.
20#
發(fā)表于 2025-3-25 02:48:49 | 只看該作者
https://doi.org/10.1007/978-3-031-15127-9valuation; conic support measure; Grassmann angle; Master Steiner formula; central hyperplane tessellati
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 22:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄石市| 清徐县| 五台县| 乌兰察布市| 扎兰屯市| 神农架林区| 阿合奇县| 宁远县| 平阴县| 开化县| 漳州市| 扶沟县| 蒲江县| 贵南县| 两当县| 淳化县| 黄梅县| 青岛市| 合阳县| 铁岭县| 平武县| 仙游县| 乌恰县| 札达县| 霍山县| 蒙山县| 泰顺县| 田东县| 岑巩县| 嘉定区| 梧州市| 崇左市| 甘孜县| 石楼县| 金阳县| 平乐县| 莆田市| 常州市| 通河县| 静宁县| 蓝田县|