找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Control and Estimation of Distributed Parameter Systems; International Confer W. Desch,F. Kappel,K. Kunisch Conference proceedings 1998 Spr

[復(fù)制鏈接]
樓主: 輕舟
41#
發(fā)表于 2025-3-28 15:09:30 | 只看該作者
42#
發(fā)表于 2025-3-28 18:54:47 | 只看該作者
Forschung und Praxis an der FHWien der WKWquations. The major advantage of the reduced basis method over others based on finite element, finite difference or spectral method is that it may capture the essential property of solutions with very few basis elements. The feasibility of this method is demonstrated for boundary control problems mo
43#
發(fā)表于 2025-3-28 23:35:51 | 只看該作者
Forschung und Praxis an der FHWien der WKWmethod is constructed by means of multi-step proximal regularization (only w.r.t. the control functions) in the penalized problems. For distributed control problems with state constraints convergence of the approximately determined solutions of the regularized problems to an optimal process is prove
44#
發(fā)表于 2025-3-29 04:57:43 | 只看該作者
45#
發(fā)表于 2025-3-29 07:57:08 | 只看該作者
46#
發(fā)表于 2025-3-29 15:26:09 | 只看該作者
Veronique Riedel,Oliver Schwedesons two and one respectively. A dissipative term is assumed to act in the one-dimensional equation. We prove the existence and the uniqueness of solutions. Each trajectory is proved to converge to an equilibrium as t → ∞. On the other hand we show that the convergence rate of the energy is not expon
47#
發(fā)表于 2025-3-29 17:50:54 | 只看該作者
Veronique Riedel,Oliver SchwedesDirichlet boundary conditions. Using the framework of mild solutions to parabolic systems with nonregular dynamics, we prove a general existence theorem of optimal controls and derive necessary optimality conditions for the state-constrained problem under consideration. Our variational analysis is b
48#
發(fā)表于 2025-3-29 23:26:01 | 只看該作者
49#
發(fā)表于 2025-3-30 01:53:29 | 只看該作者
50#
發(fā)表于 2025-3-30 08:02:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 18:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
闻喜县| 合川市| 保康县| 罗城| 丹寨县| 宜兴市| 弥渡县| 辽阳市| 随州市| 保康县| 濮阳市| 邵阳县| 中超| 垦利县| 高密市| 海伦市| 安龙县| 调兵山市| 明星| 兴文县| 濮阳市| 肇源县| 长岛县| 阜城县| 鄯善县| 湄潭县| 吴川市| 万载县| 家居| 微博| 双流县| 鸡西市| 桐城市| 和林格尔县| 中卫市| 成都市| 浮山县| 澄迈县| 郑州市| 五家渠市| 杭锦旗|