找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Control and Estimation of Distributed Parameter Systems; International Confer W. Desch,F. Kappel,K. Kunisch Conference proceedings 1998 Spr

[復(fù)制鏈接]
樓主: 輕舟
31#
發(fā)表于 2025-3-26 23:37:06 | 只看該作者
32#
發(fā)表于 2025-3-27 01:36:26 | 只看該作者
Second Order Optimality Conditions and Stability Estimates for the Identification of Nonlinear Heatoblem. The unknown function α belongs to a set of admissible functions. For this problem the existence of a second Prechet derivative of the control-state mapping is proved. Based on this result a necessary second order optimality condition is formulated. For the investigated objective sufficient se
33#
發(fā)表于 2025-3-27 06:16:17 | 只看該作者
34#
發(fā)表于 2025-3-27 11:47:35 | 只看該作者
0373-3149 y researcher who wants to gain an impression of activities at the forefront of a vigorously expanding area in applied mathematics.978-3-0348-9800-3978-3-0348-8849-3Series ISSN 0373-3149 Series E-ISSN 2296-6072
35#
發(fā)表于 2025-3-27 15:11:31 | 只看該作者
Approximation Results for Parameter Estimation in Nonlinear Elastomers,
36#
發(fā)表于 2025-3-27 20:50:59 | 只看該作者
Control and Estimation of Distributed Parameter SystemsInternational Confer
37#
發(fā)表于 2025-3-28 01:11:02 | 只看該作者
38#
發(fā)表于 2025-3-28 04:00:34 | 只看該作者
39#
發(fā)表于 2025-3-28 06:44:14 | 只看該作者
https://doi.org/10.1007/978-3-658-13394-8 the non-smooth state and control constraints. We present the method with the example of linear optimal control problem with a boundary control function but the proposed algorithms are general and can be adapted to a much wider class of problems.
40#
發(fā)表于 2025-3-28 11:44:24 | 只看該作者
https://doi.org/10.1007/978-3-658-13394-8alue function and of the corresponding “l(fā)ocally optimal” trajectories. We examine here a time discretization also proving some a priori estimates of convergence for the value function of the time-discrete problem. Some hints are also given for the construction of a fully discrete scheme.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 18:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
无为县| 朝阳县| 广丰县| 广平县| 灵寿县| 错那县| 酒泉市| 金堂县| 东台市| 墨脱县| 孙吴县| 保山市| 永新县| 铁岭市| 临泽县| 云梦县| 固阳县| 阳西县| 泰顺县| 沙坪坝区| 文登市| 格尔木市| 封开县| 楚雄市| 克什克腾旗| 河西区| 恩平市| 融水| 建昌县| 贵溪市| 谢通门县| 凌海市| 高安市| 洪江市| 攀枝花市| 东乌珠穆沁旗| 化州市| 安乡县| 中江县| 景泰县| 隆昌县|