找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Contributions to Several Complex Variables; In Honour of Wilhelm Alan Howard (Professors),Pit-Mann Wong (Professors Book 1986 Springer Fach

[復(fù)制鏈接]
樓主: Maudlin
21#
發(fā)表于 2025-3-25 05:56:36 | 只看該作者
https://doi.org/10.1007/978-3-642-65889-1Jet bundles and logarithmic 1-forms play an important role in the study of the value distribution of meromorphic mappings into algebraic varieties (cf. [01] [G-G1] and [N1?41). On the other hand, logarithmic vector fields as well as logarithmic 1-forms have been used in the study of Gauss-Manin connection and singularities (cf. [S1]).
22#
發(fā)表于 2025-3-25 11:07:44 | 只看該作者
Gastric Acid Secretory MechanismsIn this note we give a numerical version of k-ampleness for line bundles (Definition 1) and prove a vanishing theorem (Theorem 2) of Nakano type for these bundles. This vanishing theorem yields a Lefschetz-type theorem (Theorem 3). We begin by reviewing the Nakai-Moishezon-Kleiman criterion for ampleness on which our numerical condition is based.
23#
發(fā)表于 2025-3-25 14:02:57 | 只看該作者
Compensation of Vestibular LesionsThis paper is a survey of recent developments in the theory of the extension of analytic sets and closed, positive currents.
24#
發(fā)表于 2025-3-25 18:39:44 | 只看該作者
The Heat Equation for the ,-Neumann Problem on Strictly Pseudoconvex Domains,The heat equation for the .-Neumann problem on strictly pseudoconvex domains is a complex analogue of a classical problem in Riemannian geometry. In this section, we will describe some of the classical Riemannian results. To keep things simple, we will only talk about domains.
25#
發(fā)表于 2025-3-25 23:33:48 | 只看該作者
,Complete K?hler Domains. A Survey of Some Recent Results,One of the major aspects of complex analysis consists in the investigation of the implications between geometric properties of complex analytic manifolds (or complex spaces) and the nature of certain complex analytic objects on them.
26#
發(fā)表于 2025-3-26 02:21:55 | 只看該作者
On the Minimality of Hyperplane Sections of Gorenstein Threefolds,Let X be a normal irreducible three dimensional projective variety whose local rings are Cohen Macaulay and whose dualizing sheaf, K. is invertible (see §0 for more details). We will call such a variety a Gorenstein threefold throughout this article.
27#
發(fā)表于 2025-3-26 05:35:34 | 只看該作者
On Meromorphic Equivalence Relations,We denote by X a weakly normal (see § 2.3.) complex space with countable topology and by R ? X × X an analytic set with the following two properties:
28#
發(fā)表于 2025-3-26 11:47:27 | 只看該作者
29#
發(fā)表于 2025-3-26 16:03:15 | 只看該作者
30#
發(fā)表于 2025-3-26 19:00:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 19:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鹤庆县| 上饶县| 崇州市| 固始县| 东山县| 富锦市| 安福县| 余江县| 巴林右旗| 黑龙江省| 井陉县| 宝鸡市| 高要市| 宿迁市| 安塞县| 洞头县| 永济市| 弋阳县| 卢龙县| 柘城县| 桂平市| 噶尔县| 左云县| 会东县| 江西省| 牙克石市| 满洲里市| 樟树市| 凌海市| 苏州市| 武安市| 江北区| 庐江县| 吴江市| 鄂尔多斯市| 陆丰市| 宜阳县| 吕梁市| 岳阳市| 天柱县| 锡林郭勒盟|