找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Contributions to Several Complex Variables; In Honour of Wilhelm Alan Howard (Professors),Pit-Mann Wong (Professors Book 1986 Springer Fach

[復(fù)制鏈接]
樓主: Maudlin
11#
發(fā)表于 2025-3-23 13:16:08 | 只看該作者
W. Creutzfeldt,C. Creutzfeldt,R. Arnold as follows. Suppose X??. is an analytic variety of pure dimension p and q ≥ n-p. Let G(q,n) denote the Grassmannian of q-dimensional linear subspaces of ?.. We measure the “growth” of a variety Y of dimension p by computing vol.(Y?B.(r)) where vol. denotes the 2p-Hausdorff measure. Stoll’s result r
12#
發(fā)表于 2025-3-23 16:35:06 | 只看該作者
13#
發(fā)表于 2025-3-23 19:20:27 | 只看該作者
14#
發(fā)表于 2025-3-23 22:29:42 | 只看該作者
William Strieder,Rutherford Arisfits into a fine classification, details of its function theory, etc., one should use as much Lie theoretic information about ? as is possible. In particular it is often useful to study the orbit structure of real subgroups of ?. Such orbits are usually not complex sub-manifolds of X.
15#
發(fā)表于 2025-3-24 03:15:29 | 只看該作者
Vorlesungen über die Theorie der PolyederThe heat equation for the .-Neumann problem on strictly pseudoconvex domains is a complex analogue of a classical problem in Riemannian geometry. In this section, we will describe some of the classical Riemannian results. To keep things simple, we will only talk about domains.
16#
發(fā)表于 2025-3-24 08:21:42 | 只看該作者
Vorlesungen über die neuere GeometrieOne of the major aspects of complex analysis consists in the investigation of the implications between geometric properties of complex analytic manifolds (or complex spaces) and the nature of certain complex analytic objects on them.
17#
發(fā)表于 2025-3-24 11:39:27 | 只看該作者
,Konforme Abbildung von Minimalfl?chen,Let X be a normal irreducible three dimensional projective variety whose local rings are Cohen Macaulay and whose dualizing sheaf, K. is invertible (see §0 for more details). We will call such a variety a Gorenstein threefold throughout this article.
18#
發(fā)表于 2025-3-24 14:52:57 | 只看該作者
19#
發(fā)表于 2025-3-24 21:21:46 | 只看該作者
20#
發(fā)表于 2025-3-25 01:25:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 01:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
松原市| 通城县| 湘乡市| 綦江县| 达州市| 邛崃市| 泾源县| 南通市| 邵武市| 彰化市| 黎平县| 安吉县| 屯留县| 南投县| 淳安县| 昭苏县| 洪湖市| 共和县| 安仁县| 吴桥县| 伊吾县| 舞阳县| 台中市| 达尔| 庐江县| 庆城县| 福鼎市| 彰化县| 新巴尔虎左旗| 兴海县| 山东| 肥东县| 石屏县| 镇宁| 嘉义市| 平顺县| 新沂市| 普宁市| 都江堰市| 托克逊县| 滨海县|