找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Contributions to Several Complex Variables; In Honour of Wilhelm Alan Howard (Professors),Pit-Mann Wong (Professors Book 1986 Springer Fach

[復制鏈接]
樓主: Maudlin
11#
發(fā)表于 2025-3-23 13:16:08 | 只看該作者
W. Creutzfeldt,C. Creutzfeldt,R. Arnold as follows. Suppose X??. is an analytic variety of pure dimension p and q ≥ n-p. Let G(q,n) denote the Grassmannian of q-dimensional linear subspaces of ?.. We measure the “growth” of a variety Y of dimension p by computing vol.(Y?B.(r)) where vol. denotes the 2p-Hausdorff measure. Stoll’s result r
12#
發(fā)表于 2025-3-23 16:35:06 | 只看該作者
13#
發(fā)表于 2025-3-23 19:20:27 | 只看該作者
14#
發(fā)表于 2025-3-23 22:29:42 | 只看該作者
William Strieder,Rutherford Arisfits into a fine classification, details of its function theory, etc., one should use as much Lie theoretic information about ? as is possible. In particular it is often useful to study the orbit structure of real subgroups of ?. Such orbits are usually not complex sub-manifolds of X.
15#
發(fā)表于 2025-3-24 03:15:29 | 只看該作者
Vorlesungen über die Theorie der PolyederThe heat equation for the .-Neumann problem on strictly pseudoconvex domains is a complex analogue of a classical problem in Riemannian geometry. In this section, we will describe some of the classical Riemannian results. To keep things simple, we will only talk about domains.
16#
發(fā)表于 2025-3-24 08:21:42 | 只看該作者
Vorlesungen über die neuere GeometrieOne of the major aspects of complex analysis consists in the investigation of the implications between geometric properties of complex analytic manifolds (or complex spaces) and the nature of certain complex analytic objects on them.
17#
發(fā)表于 2025-3-24 11:39:27 | 只看該作者
,Konforme Abbildung von Minimalfl?chen,Let X be a normal irreducible three dimensional projective variety whose local rings are Cohen Macaulay and whose dualizing sheaf, K. is invertible (see §0 for more details). We will call such a variety a Gorenstein threefold throughout this article.
18#
發(fā)表于 2025-3-24 14:52:57 | 只看該作者
19#
發(fā)表于 2025-3-24 21:21:46 | 只看該作者
20#
發(fā)表于 2025-3-25 01:25:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 19:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
固安县| 永寿县| 南涧| 达拉特旗| 西青区| 睢宁县| 南部县| 彩票| 新疆| 城市| 航空| 雅江县| 德钦县| 宝坻区| 九龙县| 隆德县| 怀安县| 那曲县| 津南区| 获嘉县| 周至县| 衡东县| 温州市| 水城县| 古交市| 高陵县| 湘潭市| 凤庆县| 安国市| 儋州市| 芜湖市| 阳信县| 永平县| 无棣县| 临潭县| 旺苍县| 若羌县| 来宾市| 炉霍县| 井冈山市| 长泰县|